We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The role of immune subtyping in glioma mRNA vaccine development

    Alexandro Guterres

    *Author for correspondence:

    E-mail Address: guterres_rj@yahoo.com.br

    Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil

    ,
    Mayla Abrahim

    Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil

    &
    Patrícia Cristina da Costa Neves

    Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil

    Published Online:https://doi.org/10.2217/imt-2023-0027

    Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.

    Plain language summary

    Scientists study special vaccines for hard-to-treat brain tumors. They looked at things, such as information about patients and the small parts of cells that make up the tumor, to find ways to help. They found that brain tumors can make our body's defenses act differently. They also found some possible targets and unique defense patterns that are special to each patient when fighting these tumors. Patients with these special defenses and good targets might respond better to treatment with vaccines. This is exciting because it means that in the future, we might have treatments made for each person. But we still need to do more research to figure out how to get these vaccines to the tumor, so this research gives us hope that we can find better treatments and more choices for people with brain cancer. If we keep researching, we might find even better treatments in the future.

    Tweetable abstract

    Personalized mRNA vaccines show potential for treating gliomas, with gene profiling and clinical data revealing immune subtypes linked to treatment response. Further research is needed to optimize delivery and target selection. #mRNAVaccines #CNSCancer

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Louis DN, Perry A, Wesseling P et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23(8), 1231–1251 (2021).
    • 2. Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol. 32(4), e13062 (2022).
    • 3. Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 16(1), 9 (2019).
    • 4. Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim. Biophys. Acta 1862(3), 442–451 (2016).
    • 5. Faraj CA, Snyder RI, McCutcheon IE. Intracranial emergencies in neurosurgical oncology: pathophysiology and clinical management. Emerg. Cancer Care 1(1), 13 (2022).
    • 6. Lamba N, Fick T, Nandoe Tewarie R, Broekman ML. Management of hydrocephalus in patients with leptomeningeal metastases: an ethical approach to decision-making. J. Neurooncol. 140(1), 5–13 (2018).
    • 7. Nabors LB, Ammirati M, Bierman PJ et al. Central nervous system cancers. J. Natl Comprehens. Cancer Netw. 11(9), 1114–1151 (2013).
    • 8. Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9(3), 193–199 (2012).
    • 9. Dutta V. Chemotherapy, neurotoxicity, and cognitive changes in breast cancer. J. Cancer Res. Ther. 7(3), 264 (2011).
    • 10. Wilkes GM. Targeted therapy: attacking cancer with molecular and immunological targeted agents. Asia Pac. J. Oncol. Nurs. 5(2), 137–155 (2018).
    • 11. Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ. Tumour treating fields therapy for glioblastoma: current advances and future directions. Br. J. Cancer 124(4), 697–709 (2021).
    • 12. Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLOS ONE 10(5), e0125269 (2015).
    • 13. Silginer M, Weller M, Stupp R, Roth P. Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis. 8(4), e2753–e2753 (2017).
    • 14. Wenger C, Giladi M, Bomzon Z, Salvador R, Basser PJ, Miranda PC. Modeling tumor treating fields (TTFields) application in single cells during metaphase and telophase. Presented at: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Milan, Italy, 25–29 August 2015.
    • 15. Carrieri FA, Smack C, Siddiqui I, Kleinberg LR, Tran PT. Tumor treating fields: at the crossroads between physics and biology for cancer treatment. Front. Oncol. 10, doi: 10.3389/fonc.2020.575992 (2020).
    • 16. Stupp R, Taillibert S, Kanner AA et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma. JAMA 314(23), 2535 (2015).
    • 17. Stupp R, Taillibert S, Kanner A et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma. JAMA 318(23), 2306 (2017).
    • 18. Stupp R, Wong ET, Kanner AA et al. NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur. J. Cancer 48(14), 2192–2202 (2012).
    • 19. Lassman AB, Joanta-Gomez AE, Pan PC, Wick W. Current usage of tumor treating fields for glioblastoma. Neurooncol. Adv. 2(1), 1–9 (2020).
    • 20. Yang T, Kong Z, Ma W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential. Hum. Vaccin. Immunother. 17(2), 546–553 (2021).
    • 21. Yang K, Wu Z, Zhang H et al. Glioma targeted therapy: insight into future of molecular approaches. Mol. Cancer 21(1), 39 (2022). • Discusses insights into advancing neuro-oncology treatments.
    • 22. Khasraw M, Fujita Y, Lee-Chang C, Balyasnikova IV, Najem H, Heimberger AB. New approaches to glioblastoma. Annu Rev Med 73(1), 279–292 (2022).
    • 23. Suarez-Meade P, Marenco-Hillembrand L, Sherman WJ. Neuro-oncologic emergencies. Curr Oncol Rep 24(8), 975–984 (2022).
    • 24. Picca A, Guyon D, Santonocito OS et al. Innovating strategies and tailored approaches in neuro-oncology. Cancers (Basel) 14(5), 1124 (2022). • Discusses insights into advancing neuro-oncology treatments.
    • 25. Liau LM, Ashkan K, Brem S et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma. JAMA Oncol. 9(1), 112 (2023). •• Debate arises over autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma treatment: breakthrough or illusion in neuro-oncology?
    • 26. Preusser M, van den Bent MJ. Autologous tumor lysate-loaded dendritic cell vaccination (DCVax-L) in glioblastoma: Breakthrough or fata morgana? Neuro Oncol. 25(4), 631–634 (2023). •• Debate arises over autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma treatment: breakthrough or illusion in neuro-oncology?
    • 27. Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin. Biol. Ther. 21(2), 201–218 (2021).
    • 28. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 65, 14–20 (2020).
    • 29. Lundstrom K. Latest development on RNA-based drugs and vaccines. Future Sci. OA 4(5), 1–10 (2018).
    • 30. Guevara ML, Persano F, Persano S. Advances in Lipid nanoparticles for mRNA-based cancer immunotherapy. Front. Chem. 8, doi: 10.3389/fchem.2020.589959 (2020).
    • 31. Chen Z, Wang X, Yan Z, Zhang M. Identification of tumor antigens and immune subtypes of glioma for mRNA vaccine development. Cancer Med. 11(13), 2711–2726 (2022).
    • 32. Ma S, Ba Y, Ji H, Wang F, Du J, Hu S. Recognition of Tumor-associated antigens and immune subtypes in glioma for mRNA vaccine development. Front. Immunol. 12, doi: 10.3389/fimmu.2021.738435 (2021).
    • 33. Zhong H, Liu S, Cao F et al. Dissecting tumor antigens and immune subtypes of glioma to develop mRNA vaccine. Front. Immunol. 12, doi: 10.3389/fimmu.2021.709986 (2021).
    • 34. Ye L, Wang L, Yang J et al. Identification of tumor antigens and immune subtypes in lower grade gliomas for mRNA vaccine development. J. Transl. Med. 19(1), 352 (2021).
    • 35. Zhou Q, Yan X, Zhu H et al. Identification of three tumor antigens and immune subtypes for mRNA vaccine development in diffuse glioma. Theranostics 11(20), 9775–9790 (2021).
    • 36. Ye L, Wang L, Yang J et al. Identification of tumor antigens and immune landscape in glioblastoma for mRNA vaccine development. Front. Genet. 12, doi: 10.3389/fgene.2021.701065 (2021).
    • 37. Rose M, Cardon T, Aboulouard S et al. Surfaceome Proteomic of glioblastoma revealed potential targets for immunotherapy. Front. Immunol. 12, doi: 10.3389/fimmu.2021.746168 (2021).
    • 38. Lin H, Wang K, Xiong Y et al. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front. Immunol. 13, doi:10.3389/fimmu.2022.773264 (2022).
    • 39. Wu C, Qin C, Long W, Wang X, Xiao K, Liu Q. Tumor antigens and immune subtypes of glioblastoma: the fundamentals of mRNA vaccine and individualized immunotherapy development. J Big Data 9(1), 92 (2022).
    • 40. Daneman R, Prat A. The blood–brain barrier. Cold Spring Harbor Perspect. Biol. 7(1), a020412 (2015).
    • 41. Hersh AM, Alomari S, Tyler BM. Crossing the blood–brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 23(8), 4153 (2022). •• Discusses drug delivery in neuro-oncology.
    • 42. Nitika, Wei J, Hui A-M. The delivery of mRNA vaccines for therapeutics. Life 12(8), 1254 (2022). • Discusses drug delivery in neuro-oncology.
    • 43. Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed. Res. Int. 2014, 1–37 (2014).
    • 44. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17(1), 69 (2020).
    • 45. Wu Z, Li T. Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: challenges and future perspectives. Pharm. Res. 38(3), 473–478 (2021).
    • 46. Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40(11), 1586–1600 (2022).
    • 47. Ratnam NM, Gilbert MR, Giles AJ. Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro. Oncol. 21(1), 37–46 (2019).
    • 48. Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: the future of prevention of viral infections? J. Med. Virol. 95(2), e28572 (2023).
    • 49. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20(1), 41 (2021).
    • 50. Jung SM, Kim W-U. Targeted immunotherapy for autoimmune disease. Immune Netw. 22(1), e9 (2022).
    • 51. Van Hoecke L, Verbeke R, Dewitte H et al. mRNA in cancer immunotherapy: beyond a source of antigen. Mol. Cancer 20(1), 48 (2021).
    • 52. Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim. Biophys. Acta 1789(9–10), 518–528 (2009).
    • 53. Murat P, Tellam J. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation. Wiley Interdiscip. Rev. RNA 6(2), 157–171 (2015).
    • 54. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20(11), 651–668 (2020).
    • 55. Kim SC, Sekhon SS, Shin W-R et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol. 18(1), 1–8 (2022).
    • 56. Jia Y, Wei Y. Modulators of MicroRNA function in the immune system. Int. J. Mol. Sci. 21(7), 2357 (2020).
    • 57. Beck JD, Reidenbach D, Salomon N et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20(1), 69 (2021).
    • 58. Scheetz L, Park KS, Li Q et al. Engineering patient-specific cancer immunotherapies. Nat. Biomed. Eng. 3(10), 768–782 (2019).
    • 59. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics – developing a new class of drugs. Nat. Rev. Drug Discov. 13(10), 759–780 (2014).
    • 60. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 17(4), 261–279 (2018).
    • 61. Bringmann A, Held SAE, Heine A, Brossart P. RNA vaccines in cancer treatment. J. Biomed. Biotechnol. 2010, 1–12 (2010).
    • 62. Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 12, doi: 10.3389/fimmu.2021.627932 (2021).
    • 63. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat. Rev. Cancer 12(4), 307–313 (2012).
    • 64. Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118(6), 1991–2001 (2008).
    • 65. Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opin. Investig. Drugs 30(5), 529–541 (2021).
    • 66. Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther. 8(1), 9 (2023).
    • 67. Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A, Chan TA. The role of neoantigens in response to immune checkpoint blockade. Int. Immunol. 28(8), 411–419 (2016).
    • 68. Fang X, Guo Z, Liang J et al. Neoantigens and their potential applications in tumor immunotherapy (review). Oncol. Lett. 23(3), 88 (2022).
    • 69. Baghban R, Roshangar L, Jahanban-Esfahlan R et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18(1), 59 (2020).
    • 70. Anderson NM, Simon MC. The tumor microenvironment. Curr. Biol. 30(16), R921–R925 (2020).
    • 71. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19(11), 1423–1437 (2013).
    • 72. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45), 5904–5912 (2008).
    • 73. Shemesh CS, Hsu JC, Hosseini I et al. Personalized Cancer vaccines: clinical landscape, challenges, and opportunities. Mol. Ther. 29(2), 555–570 (2021).
    • 74. Wang D-R, Wu X-L, Sun Y-L. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct. Target Ther. 7(1), 331 (2022).
    • 75. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol. Immunol. 17(8), 807–821 (2020).
    • 76. Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).
    • 77. Rostamizadeh L, Molavi O, Rashid M et al. Recent advances in cancer immunotherapy: modulation of tumor microenvironment by Toll-like receptor ligands. Bioimpacts 12(3), 261–290 (2022).
    • 78. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat. Rev. Cancer 21(6), 345–359 (2021).
    • 79. Disis ML. Immune regulation of cancer. J. Clin. Oncol. 28(29), 4531–4538 (2010).
    • 80. Thol K, Pawlik P, McGranahan N. Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med. 14(1), 137 (2022).
    • 81. Shelton SE, Nguyen HT, Barbie DA, Kamm RD. Engineering approaches for studying immune-tumor cell interactions and immunotherapy. iScience 24(1), doi: 10.1016/j.isci.2020.101985 (2021).
    • 82. Baghban R, Roshangar L, Jahanban-Esfahlan R et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18(1), 59 (2020).
    • 83. Liu D, Chen J, Hu X et al. Imaging-genomics in glioblastoma: combining molecular and imaging signatures. Front. Oncol. 11, doi: 10.3389/fonc.2021.699265 (2021).
    • 84. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 12(1), 8 (2020).
    • 85. Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J. Clin. Invest. 132(6), e156211 (2022).
    • 86. Binnewies M, Roberts EW, Kersten K et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24(5), 541–550 (2018).
    • 87. Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J. Clin. Invest. 132(6), e156211 (2022).
    • 88. Li Y, Su Z, Zhao W et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1(9), 882–893 (2020).
    • 89. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 17(4), 261–279 (2018).
    • 90. Kim W, Liau LM. IDH mutations in human glioma. Neurosurg. Clin. N. Am. 23(3), 471–480 (2012).
    • 91. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 15(7), 405–417 (2019).
    • 92. Han S, Liu Y, Cai SJ et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br. J. Cancer 122(11), 1580–1589 (2020).
    • 93. Mirchia K, Richardson TE. Beyond IDH-mutation: emerging molecular diagnostic and prognostic features in adult diffuse gliomas. Cancers (Basel) 12(7), 1817 (2020).
    • 94. Kaminska B, Czapski B, Guzik R, Król S, Gielniewski B. Consequences of IDH1/2 mutations in gliomas and an assessment of inhibitors targeting mutated IDH proteins. Molecules 24(5), 968 (2019).
    • 95. Guo C, Pirozzi CJ, Lopez GY, Yan H. Isocitrate dehydrogenase mutations in gliomas. Curr. Opin. Neurol. 24(6), 648–652 (2011).
    • 96. Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics 14(2), 284–297 (2017).
    • 97. Turkalp Z, Karamchandani J, Das S. IDH mutation in glioma. JAMA Neurol. 71(10), 1319 (2014).