We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Current and future trends in neoadjuvant immunotherapy for the treatment of triple-negative breast cancer

    Ramon Andrade Bezerra de Mello

    *Author for correspondence:

    E-mail Address: ramondemello@gmail.com

    Department of Oncology, Oxford Cancer Center, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, OX3 7LE, Oxford, UK

    Department of Oncology, University of Oxford, OX3 7ER, Oxford, UK

    Post Graduation Program in Medicine, Faculty of Medicine, Nine of July University, 015250-000, São Paulo, Brazil

    ,
    Kátia Roque Perez

    Post Graduation Program in Medicine, Faculty of Medicine, Nine of July University, 015250-000, São Paulo, Brazil

    Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru

    &
    Thais Pérez Vazquez

    São Paulo Cancer Institute, University of São Paulo, São Paulo, 01246-000, Brazil

    Published Online:https://doi.org/10.2217/imt-2022-0277

    Triple-negative breast cancer (TNBC) comprises 15–20% of all breast cancers (BC). Lacking targeted therapy options, TNBC becomes the focal point of clinical investigations aiming not only to identify drugs with enhanced response potential but also to uncover new immunological and/or metabolic pathways conducive to more effective treatments. Currently, neoadjuvant treatment for TNBC relies on standard chemotherapy in conjunction with immunotherapy, given the improved response observed with this drug combination. This review delves into the latest therapeutic updates in TNBC treatment and explores potential advancements shaping the future landscape of this disease in the neoadjuvant setting.

    References

    • 1. Lehmann BD, Pietenpol JA, Tan AR. Triple-negative breast cancer: molecular subtypes and new targets for therapy. Am. Soc. Clin. Oncol. Educ. Book 2015, e31–9 (2015).
    • 2. Allison KH, Elizabeth M, Hammond H et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J. Clin. Oncol. 38, (2020).
    • 3. Lehmann BD, Bauer JA, Chen X et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121(7), 2750–2767 (2011).
    • 4. Burstein MD, Tsimelzon A, Poage GM et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res. 21(7), 1688–1698 (2015).
    • 5. Bou Zerdan M, Ghorayeb T, Saliba F et al. Triple negative breast cancer: updates on classification and treatment in 2021. Cancers (Basel). 14(5), 1253 (2022).
    • 6. Dieci MV, Miglietta F, Guarneri V. Immune infiltrates in breast cancer: recent updates and clinical implications. Cells. 10(2), 223 (2021).
    • 7. Lehmann BD, Jovanović B, Chen X et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLOS ONE 11(6), (2016).
    • 8. Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast. Suppl. 2(2), 36–40 (2016).
    • 9. Salgado R, Denkert C, Demaria S et al. International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 26(2), 259–271 (2015).
    • 10. Garufi G, Carbognin L, Schettini F et al. Updated neoadjuvant treatment landscape for early triple negative breast cancer: immunotherapy, potential predictive biomarkers, and novel agents. Cancers. 14(17), 4064 (2022).
    • 11. Anders CK, Abramson V, Tan T, Dent R. The evolution of triple-negative breast cancer: from biology to novel therapeutics. Am. Soc. Clin. Oncol. Educ. Book. 35, 34–42 (2016).
    • 12. Adams S, Gray RJ, Demaria S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. 32(27), 2959–2966 (2014).
    • 13. Yu X, Zhang Z, Wang Z et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. Clin. Transl. Oncol. 18(5), 497–506 (2016).
    • 14. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer. 4, 59 (2016).
    • 15. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med. 17(1), 90 (2019).
    • 16. Graeser M, Feuerhake F, Gluz O et al. Immune cell composition and functional marker dynamics from multiplexed immunohistochemistry to predict response to neoadjuvant chemotherapy in the WSG-ADAPT-TN trial. J. Immunother. Cancer. 9(5), (2021).
    • 17. Schmid P, Cortes J, Pusztai L et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382(9), 810–821 (2020).
    • 18. Gianni L, Huang CS, Egle D et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol. 33(5), 534–543 (2022).
    • 19. Loibl S, Schneeweiss A, Huober J et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann. Oncol. 33(11), 1149–1158 (2022).
    • 20. Ren S, Chen J, Xu X et al. CameL-sq Study Group. Camrelizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): a phase 3 trial. J Thorac Oncol. 17(4), 544–557 (2022).
    • 21. Dziadkowiec KN, Gasiorowska E, Nowak-Markwitz E, Jankowska A. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny. 15(4), 215–219 (2016).
    • 22. Amé JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays. 26(8), 882–893 (2004).
    • 23. Kuchenbaecker KB, Hopper JL, Barnes DR et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 317(23), 2402–2416 (2017).
    • 24. Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 16(3), 255–282 (2021).
    • 25. Robson M, Im SA, Senkus E et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377(6), 523–533 (2017).
    • 26. Litton JK, Rugo HS, Ettl J et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379(8), 753–763 (2018).
    • 27. Tutt ANJ, Garber JE, Kaufman B et al. OlympiA Clinical Trial Steering Committee and Investigators. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 384(25), 2394–2405 (2021).
    • 28. Vinayak S, Tolaney SM, Schwartzberg L et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 5(8), 1132–1140 (2019).
    • 29. Domchek SM, Postel-Vinay S, Im SA et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 21(9), 1155–1164 (2020).
    • 30. Geurts V, Kok M. Immunotherapy for metastatic triple negative breast cancer: current paradigm and future approaches. Curr. Treat Options Oncol. 24(6), 628–643 (2023).
    • 31. Rugo HS, Tolaney SM, Loirat D et al. Safety analyses from the phase 3 ASCENT trial of sacituzumab govitecan in metastatic triple-negative breast cancer. NPJ Breast Cancer. 8(1), 98 (2022).
    • 32. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 276(1), 80–96 (2017).
    • 33. Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res. Treat. 195(1), 1–15 (2022).
    • 34. Koboldt DC, Fulton RS, McLellan MD et al. Comprehensive molecular portraits of human breast tumors. Nature. 490(7418), 61–70 (2012).
    • 35. Liu H, Murphy CJ, Karreth FA et al. Identifying and targeting sporadic oncogenic genetic aberrations in mouse models of triple-negative breast cancer. Cancer Discov. 8(3), 354–369 (2018).
    • 36. Kim SB, Maslyar DJ, Dent R et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomized, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 18(10), 1360–1372 (2017).
    • 37. Dent R, Oliveira M, Isakoff SJ et al. Final results of the double-blind placebo-controlled randomized phase 2 LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer. Breast Cancer Res. Treat. 189(2), 377–386 (2021).
    • 38. Oliveira M, Saura C, Nuciforo P et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann Oncol. 30(8), 1289–1297 (2019).
    • 39. Balko JM, Giltnane JM, Wang K et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 4(2), 232–245 (2014).
    • 40. Mrklić I, Pogorelić Z, Ćapkun V, Tomić SŽ. Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem. 115(4), 344–348 (2013).
    • 41. Astvatsaturyan K, Yue Y, Walts AE, Bose S. Androgen receptor positive triple negative breast cancer: clinicopathologic, prognostic, and predictive features. PLoS One. 13(6), e0197827 (2018).
    • 42. Gerratana L, Basile D, Buono G et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 68, 102–110 (2018).
    • 43. Kim S, Moon BI, Lim W et al. Feasibility of classification of triple negative breast cancer by immunohistochemical surrogate markers. Clin. Breast Cancer. 18(5), 1123–1132 (2018).
    • 44. Wang C, Pan B, Zhu H et al. Prognostic value of androgen receptor in triple negative breast cancer: A meta-analysis. Oncotarget. 7(29), 46482–46491 (2016).
    • 45. Vtorushin S, Dulesova A, Krakhmal N. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features. J. Zhejiang Univ. Sci. B. 23(8), 617–624 (2022).
    • 46. Gucalp A, Tolaney S, Isakoff SJ et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin. Cancer Res. 19(19), 5505–5512 (2013).
    • 47. Traina TA, Miller K, Yardley DA et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J. Clin. Oncol. 36(9), 884–890 (2018).
    • 48. Sinkala M, Nkhoma P, Mulder N, Martin DP. Integrated molecular characterization of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun Biol. 4(1), 9 (2021).
    • 49. Bianchini G, de Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer – expanded options, evolving needs. Nat. Rev. Clin. Oncol. 19(2), 91–113 (2022).
    • 50. Koboldt DC, Fulton RS, McLellan MD et al. Comprehensive molecular portraits of human breast tumors. Nature. 490(7418), 61–70 (2012).
    • 51. Overman MJ, McDermott R, Leach JL et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18(9), 1182–1191 (2017).
    • 52. Ren XY, Song Y, Wang J et al. Mismatch repair deficiency and microsatellite instability in triple-negative breast cancer: a retrospective study of 440 patients. Front. Oncol. 11, 570623 (2021).
    • 53. Luchini C, Bibeau F, Ligtenberg MJL et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumor mutational burden: a systematic review-based approach. Ann. Oncol. 30(8), 1232–1243 (2019).
    • 54. Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis. 29(4), 673–680 (2008).
    • 55. Le DT, Uram JN, Wang H et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372(26), 2509–2520 (2015).
    • 56. Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357(6349), 409–413 (2017).
    • 57. Cortes-Ciriano I, Lee S, Park WY et al. A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 8, 15180 (2017).
    • 58. Goodman AM, Kato S, Bazhenova L et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16(11), 2598–2608 (2017).
    • 59. Rizvi NA, Hellmann MD, Snyder A et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348(6230), 124–128 (2015).
    • 60. Hellmann MD, Ciuleanu TE, Pluzanski A et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378(22), 2093–2104 (2018).
    • 61. Samstein RM, Lee CH, Shoushtari AN et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51(2), 202–206 (2019).
    • 62. Thomas A, Routh ED, Pullikuth A et al. Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology. 7(10), e1490854 (2018).
    • 63. Karn T, Denkert C, Weber KE et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann. Oncol. 31(9), 1216–1222 (2020).
    • 64. Hendrickx W, Simeone I, Anjum S et al. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology. 6(2), e125365 (2017).
    • 65. Karn T, Denkert C, Weber KE et al. 127O Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann. Oncol. 31(9), 1216–1222 (2020).
    • 66. Loi S, Dushyanthen S, Beavis PA et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22(6), 1499–1509 (2016).
    • 67. Criscitiello C, Vingiani A, Maisonneuve P et al. Tumor-infiltrating lymphocytes (TILs) in ER+/HER2- breast cancer. Breast Cancer Res. Treat. 183(2), 347–354 (2020).
    • 68. Criscitiello C, Bayar MA, Curigliano G et al. A gene signature to predict high tumor-infiltrating lymphocytes after neoadjuvant chemotherapy and outcome in patients with triple-negative breast cancer. Ann. Oncol. 29(1), 162–169 (2018).
    • 69. Cortes J, Cescon DW, Rugo HS et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomized, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 396(10265), 1817–1828 (2020).
    • 70. Emens LA, Adams S, Barrios CH et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol. 32(8), 983–993 (2021).
    • 71. Li Y, Zhang H, Merkher Y et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 15(1), 121 (2022).