We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
ReviewOpen Accesscc iconby iconnc iconnd icon

A new perspective on the potential application of RIPK1 in the treatment of sepsis

    Xuesong Wang

    School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China

    ,
    Yan Chai

    School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China

    ,
    Zhe Guo

    School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China

    ,
    Ziyi Wang

    School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China

    ,
    Haiyan Liao

    School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China

    ,
    Ziwen Wang

    School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China

    &
    Zhong Wang

    *Author for correspondence: Tel.: +86 010 5611 8899;

    E-mail Address: wangzhong523@vip.163.com

    Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China, 168 Litang Road, Changping District, Beijing, 102218, China

    Published Online:https://doi.org/10.2217/imt-2022-0219

    RIPK1 is a global cellular sensor that can determine the survival of cells. Generally, RIPK1 can induce cell apoptosis and necroptosis through TNF, Fas and lipopolysaccharide stimulation, while its scaffold function can sense the fluctuation of cellular energy and promote cell survival. Sepsis is a nonspecific disease that seriously threatens human health. There is some dispute in the literature about the role of RIPK1 in sepsis. In this review, the authors attempt to comprehensively discuss the differential results for RIPK1 in sepsis by summarizing the underlying molecular mechanism and putting forward a tentative idea as to whether RIPK1 can serve as a biomarker for the monitoring of treatment and progression in sepsis.

    Plain language summary

    Sepsis is a syndrome that poses a serious threat to human life and health and is classified as a medical emergency by the WHO. RIPK1 can regulate the onset of apoptosis and necrosis in several ways and is known as a sensor of cell survival status. A series of clinical trials of RIPK1 drugs has been conducted this year and have demonstrated promising efficacy in inflammatory diseases, in particular. In this paper, the authors summarize recent studies on the function and mechanism of RIPK1 in sepsis and combine them with the progress in RIPK1 drug development to provide information for the study of RIPK1 in sepsis.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    Reference

    • 1. Rudd KE, Johnson SC, Agesa KM et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395(10219), 200–211 (2020).
    • 2. Singer M, Deutschman CS, Seymour CW et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8), 801–810 (2016). •• Describes the definition and content of sepsis (third edition).
    • 3. Ko BS, Choi SH, Shin TG et al. Impact of 1-hour bundle achievement in septic shock. J. Clin. Med. 10(3), 527 (2021).
    • 4. Nedeva C, Menassa J, Puthalakath H. Sepsis: inflammation is a necessary evil. Front. Cell Dev. Biol. 7, 108 (2019).
    • 5. Sendler M, Van Den Brandt C, Glaubitz J et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology 158(1), 253–269 e214 (2020).
    • 6. Rovas A, Seidel LM, Vink H et al. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit. Care 23(1), 260 (2019).
    • 7. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front. Immunol. 11, 1722 (2020).
    • 8. Yadav H, Cartin-Ceba R. Balance between hyperinflammation and immunosuppression in sepsis. Semin. Respir. Crit. Care Med. 37(1), 42–50 (2016). •• Describes the different immune states of sepsis.
    • 9. Mifflin L, Ofengeim D, Yuan J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19(8), 553–571 (2020). •• Describes the current status and trends in RIPK1 clinical research.
    • 10. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20(1), 19–33 (2019).
    • 11. Degterev A, Ofengeim D, Yuan J. Targeting RIPK1 for the treatment of human diseases. Proc. Natl Acad. Sci. USA 116(20), 9714–9722 (2019).
    • 12. Degterev A, Hitomi J, Germscheid M et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4(5), 313–321 (2008). • Describes RIPK1 as a target for regulating programmed necrosis.
    • 13. Degterev A, Maki JL, Yuan J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20(2), 366 (2013).
    • 14. Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J. 15(22), 6189–6196 (1996).
    • 15. Christofferson DE, Li Y, Hitomi J et al. A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death Dis. 3, e320 (2012).
    • 16. Holler N, Zaru R, Micheau O et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1(6), 489–495 (2000).
    • 17. Degterev A, Huang Z, Boyce M et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1(2), 112–119 (2005).
    • 18. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4), 693–703 (2008).
    • 19. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327(5969), 1135–1139 (2010).
    • 20. Najafov A, Luu HS, Mookhtiar AK et al. RIPK1 promotes energy sensing by the mTORC1 pathway. Mol. Cell 81(2), 370–385 e377 (2021). •• Describes the involvement of RIPK1 in celluar energy regulation.
    • 21. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 14(2), 121–137 (2018).
    • 22. Mcneal SI, Legolvan MP, Chung CS, Ayala A. The dual functions of receptor interacting protein 1 in fas-induced hepatocyte death during sepsis. Shock 35(5), 499–505 (2011). •• Describes the negative effects of RIPK1 inhibition on the survival of septic mice.
    • 23. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81(4), 513–523 (1995).
    • 24. Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14(11), 727–736 (2013).
    • 25. Xu D, Jin T, Zhu H et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174(6), 1477–1491 e1419 (2018).
    • 26. Meng H, Liu Z, Li X et al. Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis. Proc. Natl Acad. Sci. USA 115(9), E2001–E2009 (2018).
    • 27. Li J, Mcquade T, Siemer AB et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2), 339–350 (2012).
    • 28. Park YH, Jeong MS, Park HH, Jang SB. Formation of the death domain complex between FADD and RIP1 proteins in vitro. Biochim. Biophys. Acta 1834(1), 292–300 (2013).
    • 29. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8(3), 297–303 (1998).
    • 30. Shan B, Pan H, Najafov A, Yuan J. Necroptosis in development and diseases. Genes Dev. 32(5-6), 327–340 (2018).
    • 31. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2), 181–190 (2003).
    • 32. Geng J, Ito Y, Shi L et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8(1), 359 (2017).
    • 33. Lafont E, Draber P, Rieser E et al. TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20(12), 1389–1399 (2018).
    • 34. Dondelinger Y, Delanghe T, Priem D et al. Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat. Commun. 10(1), 1729 (2019).
    • 35. Peltzer N, Darding M, Walczak H. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26(6), 445–461 (2016).
    • 36. Kroemer G, Galluzzi L, Vandenabeele P et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16(1), 3–11 (2009).
    • 37. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc. Drugs Ther. 21(4), 227–233 (2007).
    • 38. Li Y, Yang X, Ma C, Qiao J, Zhang C. Necroptosis contributes to the NMDA-induced excitotoxicity in rat's cultured cortical neurons. Neurosci. Lett. 447(2-3), 120–123 (2008).
    • 39. Han W, Li L, Qiu S et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 6(5), 1641–1649 (2007).
    • 40. Ito Y, Ofengeim D, Najafov A et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353(6299), 603–608 (2016).
    • 41. Ofengeim D, Mazzitelli S, Ito Y et al. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc. Natl Acad. Sci. USA 114(41), E8788–E8797 (2017).
    • 42. Gunther C, Martini E, Wittkopf N et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477(7364), 335–339 (2011).
    • 43. O'donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr. Biol. 17(5), 418–424 (2007).
    • 44. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22(2), 245–257 (2006).
    • 45. Li H, Kobayashi M, Blonska M, You Y, Lin X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J. Biol. Chem. 281(19), 13636–13643 (2006).
    • 46. Bertrand MJ, Milutinovic S, Dickson KM et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30(6), 689–700 (2008).
    • 47. Gaither A, Porter D, Yao Y et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res. 67(24), 11493–11498 (2007).
    • 48. Petersen SL, Wang L, Yalcin-Chin A et al. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12(5), 445–456 (2007).
    • 49. Geserick P, Hupe M, Moulin M et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J. Cell Biol. 187(7), 1037–1054 (2009).
    • 50. Krikos A, Laherty CD, Dixit VM. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J. Biol. Chem. 267(25), 17971–17976 (1992).
    • 51. Wright A, Reiley WW, Chang M et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev. Cell 13(5), 705–716 (2007).
    • 52. Kanayama A, Seth RB, Sun L et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15(4), 535–548 (2004).
    • 53. Legarda-Addison D, Hase H, O'donnell MA, Ting AT. NEMO/IKKgamma regulates an early NF-kappaB-independent cell-death checkpoint during TNF signaling. Cell Death Differ. 16(9), 1279–1288 (2009).
    • 54. Arslan SC, Scheidereit C. The prevalence of TNFalpha-induced necrosis over apoptosis is determined by TAK1-RIP1 interplay. PLOS ONE 6(10), e26069 (2011).
    • 55. Xia ZP, Sun L, Chen X et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461(7260), 114–119 (2009).
    • 56. Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem. Pharmacol. 60(8), 1143–1151 (2000).
    • 57. Wertz IE, O'rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signaling. Nature 430(7000), 694–699 (2004).
    • 58. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signaling. EMBO J. 28(5), 513–522 (2009).
    • 59. Reiley WW, Jin W, Lee AJ et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204(6), 1475–1485 (2007).
    • 60. Efeyan A, Zoncu R, Chang S et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493(7434), 679–683 (2013).
    • 61. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412(2), 179–190 (2008).
    • 62. Seo SU, Woo SM, Lee HS, Kim SH, Min KJ, Kwon TK. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene 37(38), 5205–5220 (2018).
    • 63. Noda T. Regulation of autophagy through TORC1 and mTORC1. Biomolecules 7(3), 52 (2017).
    • 64. Zhu SY, Yao RQ, Li YX et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis. 11(9), 817 (2020).
    • 65. Rickard JA, O'donnell JA, Evans JM et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5), 1175–1188 (2014).
    • 66. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5), 577–590 (2003).
    • 67. Cuchet-Lourenco D, Eletto D, Wu C et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361(6404), 810–813 (2018).
    • 68. Li Y, Fuhrer M, Bahrami E et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 116(3), 970–975 (2019).
    • 69. Furman D, Campisi J, Verdin E et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25(12), 1822–1832 (2019).
    • 70. Polykratis A, Hermance N, Zelic M et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193(4), 1539–1543 (2014).
    • 71. Patel S, Webster JD, Varfolomeev E et al. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death Differ. 27(1), 161–175 (2020).
    • 72. Zelic M, Roderick JE, O'donnell JA et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J. Clin. Invest. 128(5), 2064–2075 (2018).
    • 73. Bolognese AC, Yang WL, Hansen LW et al. Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis. Surgery doi: 10.1016/j.surg.2018.02.017 (2018).
    • 74. Liu Y, Xu Q, Wang Y et al. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis. 12(1), 62 (2021).
    • 75. Su Z, Dziedzic SA, Hu D et al. ABIN-1 heterozygosity sensitizes to innate immune response in both RIPK1-dependent and RIPK1-independent manner. Cell Death Differ. 26(6), 1077–1088 (2019).
    • 76. Najjar M, Saleh D, Zelic M et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by toll-like receptor 4. Immunity 45(1), 46–59 (2016).
    • 77. Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc. Drugs Ther. 21(6), 467–469 (2007).
    • 78. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J. Pathol. 221(1), 3–12 (2010).
    • 79. Takahashi N, Vereecke L, Bertrand MJ et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513(7516), 95–99 (2014).
    • 80. Newton K, Dugger DL, Maltzman A et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23(9), 1565–1576 (2016).
    • 81. Newton K, Dugger DL, Wickliffe KE et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343(6177), 1357–1360 (2014).
    • 82. Xie T, Peng W, Liu Y et al. Structural basis of RIP1 inhibition by necrostatins. Structure 21(3), 493–499 (2013).
    • 83. Harris PA, Berger SB, Jeong JU et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60(4), 1247–1261 (2017).
    • 84. Harris PA, King BW, Bandyopadhyay D et al. DNA-encoded library screening identifies benzo[b] [1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59(5), 2163–2178 (2016).
    • 85. Berger SB, Harris P, Nagilla R et al. Characterization of GSK'963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov. 1, 15009 (2015).
    • 86. Wang W, Marinis JM, Beal AM et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 38(4), 585–590 (2020).
    • 87. Yoshikawa M, Saitoh M, Katoh T et al. Discovery of 7-oxo-2,4,5,7-tetrahydro-6 H-pyrazolo[3,4- c]pyridine derivatives as potent, orally available, and brain-penetrating receptor interacting protein 1 (RIP1) kinase inhibitors: analysis of structure-kinetic relationships. J. Med. Chem. 61(6), 2384–2409 (2018).
    • 88. Hamilton GL, Chen H, Deshmukh G et al. Potent and selective inhibitors of receptor-interacting protein kinase 1 that lack an aromatic back pocket group. Bioorg. Med. Chem. Lett. 29(12), 1497–1501 (2019).
    • 89. Weisel K, Scott NE, Tompson DJ et al. Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers. Pharmacol. Res. Perspect. 5(6), e00365 (2017).
    • 90. Tompson DJ, Davies C, Scott NE et al. Comparison of the pharmacokinetics of RIPK1 inhibitor GSK2982772 in healthy Western and Japanese subjects. Eur. J. Drug Metab. Pharmacokinet. 46(1), 71–83 (2021).
    • 91. Yang X, Lu H, Xie H et al. Potent and selective RIPK1 inhibitors targeting dual-pockets for the treatment of systemic inflammatory response syndrome and sepsis. Angew Chem. Int. Ed. Engl. 61(5), e202114922 (2022). •• Describes animal experiments with RIPK1 inhibitors for the treatment of sepsis.
    • 92. Weisel K, Berger S, Papp K et al. Response to inhibition of receptor-interacting protein kinase 1 (RIPK1) in active plaque psoriasis: a randomized placebo-controlled study. Clin. Pharmacol. Ther. 108(4), 808–816 (2020).
    • 93. Weisel K, Scott N, Berger S et al. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8(1), e000680 (2021).
    • 94. Weisel K, Berger S, Thorn K et al. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 23(1), 85 (2021).
    • 95. Grievink HW, Heuberger J, Huang F et al. DNL104, a centrally penetrant RIPK1 inhibitor, inhibits RIP1 kinase phosphorylation in a randomized phase I ascending dose study in healthy volunteers. Clin. Pharmacol. Ther. 107(2), 406–414 (2020).
    • 96. CORRIGENDUM: DNL104, a centrally penetrant RIPK1 inhibitor, inhibits RIP1 kinase phosphorylation in a randomized phase I ascending dose study in healthy volunteers. Clin. Pharmacol. Ther. 109(6), 1678–1679 (2021).
    • 97. Denali Therapeutics. Denali Therapeutics announces that its partner Sanofi has commenced dosing of DNL758 in a phase 1 study (2019). www.globenewswire.com/news release /2019/08 / 05/1896875/0/en/Denali-Therapeutics-Announces- That-Its- Partner-Sanofihas-Commenced- Dosing-of- DNL758-in- a-Phase-1-Study.html
    • 98. US National Library of Medicine. (2018). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03757351
    • 99. US National Library of Medicine. (2018). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03757325
    • 100. US National Library of Medicine. (2018). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03681951
    • 101. Rigel Pharmaceuticals. Rigel Pharmaceuticals provides business update prior to investor & analyst call (2019). https://ir.rigel.com/news-events/press- releases/detail/270/rigel-pharmaceuticals-provides-businessupdate-prior-to
    • 102. GlaxoSmithKline. Our pipeline: pipeline changes (2019). www.gsk.com/en-gb/research-anddevelopment/our-pipeline/#pipeline-changes
    • 103. Ofengeim D, Ito Y, Najafov A et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10(11), 1836–1849 (2015).
    • 104. Zhu K, Liang W, Ma Z et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 9(5), 500 (2018).
    • 105. Wang B, Li J, Gao HM et al. Necroptosis regulated proteins expression is an early prognostic biomarker in patient with sepsis: a prospective observational study. Oncotarget 8(48), 84066–84073 (2017).
    • 106. Mallarpu CS, Ponnana M, Prasad S et al. Distinct cell death markers identified in critical care patient survivors diagnosed with sepsis. Immunol. Lett. 231, 1–10 (2021).
    • 107. Yoo H, Im Y, Ko RE, Lee JY, Park J, Jeon K. Association of plasma level of high-mobility group box-1 with necroptosis and sepsis outcomes. Sci. Rep. 11(1), 9512 (2021).
    • 108. Baker CC, Chaudry IH, Gaines HO, Baue AE. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94(2), 331–335 (1983).
    • 109. Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 5(4), 34 (2017).
    • 110. Berger SB, Kasparcova V, Hoffman S et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192(12), 5476–5480 (2014).
    • 111. Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P. Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol. Sci. 41(3), 209–224 (2020).
    • 112. Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP kinases in chronic inflammatory disease. Biomolecules 11(5), 646 (2021).
    • 113. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39(5), 517–528 (2017).
    • 114. Ince C, Mayeux PR, Nguyen T et al. The endothelium in sepsis. Shock 45(3), 259–270 (2016). • Describes the role of endothelial cells in sepsis.