We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Natural killer cells and cancer therapy, what we know and where we are going

    Faezeh Ghaemdoust

    School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran

    Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran

    ,
    Mahsa Keshavarz-Fathi

    School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran

    Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran

    Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran

    &
    Nima Rezaei

    *Author for correspondence:

    E-mail Address: rezaei_nima@yahoo.com

    Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran

    Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran

    Published Online:https://doi.org/10.2217/imt-2019-0040

    Natural killer (NK) cells are among the significant components of innate immune system and they have come to the first line of defense against tumor cells developing inside the body. CD56lo/CD16+ NK cells are highly cytotoxic and CD56hi NK cells can produce cytokines and perform a regulatory function. Specific features of NK cells have made them a unique choice for cancer immunotherapy. Simple interventions like cytokine-injection to boost the internal NK cells were the first trials to target these cells. Nowadays, many other types of intervention are under investigation, such as adoptive NK cell immunotherapy. In this paper, we will discuss the biology and function of NK cells in cancer immunosurveillance and therapeutic approaches against cancer via using NK cells.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359–E386 (2015).
    • 2. Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL. Antagonists of PD-1 and PD-L1 in cancer treatment. Sem. Oncol. 42(4), 587–600 (2015).
    • 3. Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol. 13(10), 1001–1015 (2017).
    • 4. Emens LA, Ascierto PA, Darcy PK et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 81, 116–129 (2017).
    • 5. Kiessling R, Klein E, Wigzell H. ‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5(2), 112–117 (1975).
    • 6. Jondal M, Pross H. Surface markers on human b and t lymphocytes. VI. Cytotoxicity against cell lines as a functional marker for lymphocyte subpopulations. Int. J. Cancer 15(4), 596–605 (1975).
    • 7. Pross HF, Jondal M. Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes. Clin. Exp. Immunol. 21(2), 226–235 (1975).
    • 8. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 16(2), 216–229 (1975).
    • 9. Kiessling R, Wigzell H. Department of Tumor Bioloqy, Karolinska 1. Cytotoxic cells with specificity for mouse Moloney. Eur. J. Immunol. 112(117), 113 (1975).
    • 10. Grégoire C, Chasson L, Luci C et al. The trafficking of natural killer cells. Immunol. Rev. 220(1), 169–182 (2007).
    • 11. Garrido MA, Perez P, Titus JA et al. Targeted cytotoxic cells in human peripheral blood lymphocytes. J. Immunol. 144(8), 2891–2898 (1990).
    • 12. Titus JA, Perez P, Kaubisch A, Garrido MA, Segal DM. Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J. Immunol. 139(9), 3153–3158 (1987).
    • 13. Lundqvist A, Abrams SI, Schrump DS et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res. 66(14), 7317–7325 (2006).
    • 14. Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren HG. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31, 20–29 (2017).
    • 15. Gross E, Sunwoo JB, Bui JD. Cancer immunosurveillance and immunoediting by natural killer cells. Cancer J. 19(6), 483–489 (2013).
    • 16. Smyth MJ, Cretney E, Kelly JM et al. Activation of NK cell cytotoxicity. Mol. Immunol. 42(4), 501–510 (2005).
    • 17. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions. J. Allergy Clin. Immunol. 132(3), 536–544 (2013).
    • 18. Ames E, Murphy WJ. Advantages and clinical applications of natural killer cells in cancer immunotherapy. Cancer Immunol. Immunother. 63(1), 21–28 (2014).
    • 19. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17(9), 1025–1036 (2016).
    • 20. Alnabhan R, Madrigal A, Saudemont A. Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy 17(1), 73–85 (2015).
    • 21. Keshavarz-Fathi M, Rezaei N. Chapter 2 - Immunotherapeutic approaches in cancer. In: Vaccines for Cancer Immunotherapy. Rezaei NKeshavarz-Fathi M (Eds). Academic Press, London, UK, 19–44 (2019). • In this chapter, authors reviewed available immunotherapeutics and the ones approved by US FDA.
    • 22. Fehniger TA, Cooper MA, Nuovo GJ et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101(8), 3052–3057 (2003).
    • 23. Vosshenrich CA, Garcıa-Ojeda ME, Samson-Villéger SI et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7(11), 1217 (2006).
    • 24. Sojka DK, Tian Z, Yokoyama WM. Tissue-resident natural killer cells and their potential diversity. Semin. Immunol. 26(2), 127–131 (2014).
    • 25. Artis D, Spits H. The biology of innate lymphoid cells. Nature 517(7534), 293–301 (2015).
    • 26. Poli A, Michel T, Thérésine M, Andres E, Hentges F, Zimmer J. CD56 bright natural killer (NK) cells: an important NK cell subset. Immunology 126(4), 458–465 (2008).
    • 27. Arneson LN, Leibson PJ. Signaling in natural immunity: natural killer cells. Neuroimmune Biol. 5, 151–166 (2005).
    • 28. Caligiuri MA. Human natural killer cells. Blood 112(3), 461–469 (2008).
    • 29. Suen WCW, Lee WYW, Leung KT, Pan XH, Li G. Natural killer cell-based cancer immunotherapy: a review on 10 years completed clinical trials. Cancer Invest. 36(8), 431–457 (2018).
    • 30. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 22(11), 633–640 (2001).
    • 31. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat. Rev. Immunol. 7(5), 329–339 (2007).
    • 32. Kosaka Y, Keating A. Natural killer cells for cancer immunotherapy. In: Experimental and Applied Immunotherapy. John Maher (Ed.). Humana Press Inc., NY, USA, 85–105 (2011).
    • 33. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat. Immunol. 9(5), 503 (2008).
    • 34. Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation. Front. Immunol. 4, 499 (2013).
    • 35. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity 47(5), 820–833 (2017). • A recent comprehensive review on various types of natural killer (NK) cells.
    • 36. Adams EJ, Juo ZS, Venook RT et al. Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc. Natl Acad. Sci. USA 104(24), 10128–10133 (2007).
    • 37. Lopez-Vergès S, Milush JM, Schwartz BS et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108(36), 14725–14732 (2011).
    • 38. Knapp LA, Cadavid LF, Watkins DI. The MHC-E locus is the most well conserved of all known primate class I histocompatibility genes. J. Immunol. 160(1), 189–196 (1998).
    • 39. Coupel S, Moreau A, Hamidou M, Horejsi V, Soulillou JP, Charreau B. Expression and release of soluble HLA-E is an immunoregulatory feature of endothelial cell activation. Blood 109(7), 2806–2814 (2007).
    • 40. Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J. Immunol. 160(10), 4951–4960 (1998).
    • 41. Rölle A, Jäger D, Momburg F. HLA-E peptide repertoire and dimorphism-centerpieces in the adaptive NK cell puzzle? Front. Immunol. 9, 2410–2410 (2018). • Discusses the role of CD94/NKG2C-HLA-E axis in induction of adaptive NK cells.
    • 42. Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055), 675–678 (1986).
    • 43. Lanier LL. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).
    • 44. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 8, 1124 (2017).
    • 45. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat. Immunol. 9(5), 503–510 (2008). •• Comprehensive review on NK cell biology and its inhibitory and activating receptors and ligands.
    • 46. Braud VM, Allan DSJ, O'callaghan CA et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391(6669), 795–799 (1998).
    • 47. Moretta A, Bottino C, Pende D et al. Identification of 4 subsets of human CD3-CD16+ natural-killer (Nk) cells by the expression of clonally distributed functional surface molecules - correlation between subset assignment of Nk clones and ability to mediate specific alloantigen recognition. J. Exp. Med. 172(6), 1589–1598 (1990).
    • 48. Moretta A, Tambussi G, Bottino C et al. A novel surface antigen expressed by a subset of human CD3-CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J. Exp. Med. 171(3), 695–714 (1990).
    • 49. Moretta A, Vitale M, Bottino C et al. P58 molecules as putative receptors for major histocompatibility complex (Mhc) class-I molecules in human natural-killer (NK) cells – anti-P58 antibodies reconstitute lysis of Mhc class-I-protected cells in NK clones displaying different specificities. J. Exp. Med. 178(2), 597–604 (1993).
    • 50. Andre P, Denis C, Soulas C et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175(7), 1731.e1713–1743.e1713 (2018). •• Describes the early results of a clinical trial on monalizumab, a monoclonal antibody against NKG2A targeting both NK and T cells.
    • 51. Norman PJ, Parham P. Complex interactions: the immunogenetics of human leukocyte antigen and killer cell immunoglobulin-like receptors. Semin. Hematol. 42(2), 65–75 (2005).
    • 52. Wagtmann N, Biassoni R, Cantoni C et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2(5), 439–449 (1995).
    • 53. Lanier LL. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).
    • 54. Heidenreich S, Kröger N. Reduction of relapse after unrelated donor stem cell transplantation by KIR-based graft selection. Front. Immunol. 8, 41 (2017). •• Explains the effects of various models of HLA-C mismatch following unrelated donor stem cell transplantation on the relapse.
    • 55. Kikuchi-Maki A, Catina TL, Campbell KS. Cutting edge: KIR2DL4 transduces signals into human NK cells through association with the Fc receptor gamma protein. J. Immunol. 174(7), 3859–3863 (2005).
    • 56. Allan DS, Colonna M, Lanier LL et al. Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J. Exp. Med. 189(7), 1149–1156 (1999).
    • 57. Marsh SGE, Parham P, Dupont B et al. Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002. Tissue Antigens 62(1), 79–86 (2003).
    • 58. Uhrberg M, Valiante NM, Shum BP et al. Human diversity in killer cell inhibitory receptor genes. Immunity 7(6), 753–763 (1997).
    • 59. Symons HJ, Fuchs EJ. Hematopoietic SCT from partially HLA-mismatched (HLA-haploidentical) related donors. Bone Marrow Transplant. 42(6), 365–377 (2008).
    • 60. Bryceson YT, Long EO. Line of attack: NK cell specificity and integration of signals. Curr. Opin. Immunol. 20(3), 344–352 (2008).
    • 61. Kruse PH, Matta J, Ugolini S, Vivier E. Natural cytotoxicity receptors and their ligands. Immunol. Cell Biol. 92(3), 221–229 (2014).
    • 62. Moretta A, Bottino C, Vitale M et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).
    • 63. Guo H, Qian X. Clinical applications of adoptive natural killer cell immunotherapy for cancer: current status and future prospects. Onkologie 33(7), 389–395 (2010).
    • 64. Klingemann HG, Martinson J. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6(1), 15–22 (2004).
    • 65. Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin. Immunol. doi:10.1016/j.smim.2017.07.009 (2017) (Epub ahead of print).
    • 66. Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11(7), 237–244 (1990).
    • 67. Cullen SP, Martin SJ. Mechanisms of granule-dependent killing. Cell Death Differ. 15(2), 251–262 (2008).
    • 68. Ashkenazi A, Holland P, Eckhardt SG. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J. Clin. Oncol. 26(21), 3621–3630 (2008).
    • 69. Schoenborn JR, Wilson CB. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 96, 41–101 (2007).
    • 70. Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115(11), 2167–2176 (2010).
    • 71. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat. Immunol. 9(5), 503–510 (2008).
    • 72. Coughlin CM, Salhany KE, Gee MS et al. Tumor cell responses to IFNγ affect tumorigenicity and response to IL- 12 therapy and antiangiogenesis. Immunity 9(1), 25–34 (1998).
    • 73. Haghshenas MR, Khademi B, Ashraf MJ, Ghaderi A, Erfani N. Helper and cytotoxic T-cell subsets (Th1, Th2, Tc1, and Tc2) in benign and malignant salivary gland tumors. Oral Dis. 22(6), 566–572 (2016).
    • 74. Robertson MJ. Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol. 71(2), 173–183 (2002).
    • 75. Sidky YA, Borden EC. Inhibition of angiogenesis by interfersons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 47(19), 5155–5161 (1987).
    • 76. Lugini L, Cecchetti S, Huber V et al. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 189(6), 2833–2842 (2012).
    • 77. Johansson S, Hall H, Berg L, Höglund P. NK cells in autoimmune disease. Curr. Top. Microbiol. Immunol. 298, 259–277 (2005).
    • 78. Woan K, Reddy V. Potential therapeutic role of natural killer cells in cancer. Expert Opin. Biol. Ther. 7(1), 17–29 (2007).
    • 79. Park JY, Lee SH, Yoon S-R et al. IL-15-induced IL-10 increases the cytolytic activity of human natural killer cells. Mol. Cells 32(3), 265 (2011).
    • 80. Littwitz-Salomon E, Malyshkina A, Schimmer S, Dittmer U. The cytotoxic activity of natural killer cells is suppressed by IL-10+ regulatory T cells during acute retroviral infection. Front. Immunol. 9, 1947 (2018).
    • 81. Castriconi R, Dondero A, Bellora F et al. Neuroblastoma-derived TGF-beta 1 modulates the chemokine receptor repertoire of human resting NK cells. J. Immunol. 190(10), 5321–5328 (2013).
    • 82. Lee HM, Kim KS, Kim J. A comparative study of the effects of inhibitory cytokines on human natural killer cells and the mechanistic features of transforming growth factor-beta. Cell. Immunol. 290(1), 52–61 (2014).
    • 83. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. Front. Immunol. 6, 578 (2015).
    • 84. Guerra N, Tan YX, Joncker NT et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28(4), 571–580 (2008).
    • 85. Street SEA, Hayakawa Y, Zhan Y et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199(6), 879–884 (2004).
    • 86. Jackson AL, Loeb LA. The mutation rate and cancer. Genetics 148(4), 1483–1490 (1998).
    • 87. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat. Immunol. 3(11), 999–1005 (2002).
    • 88. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin. Cancer Biol. 16(1), 3–15 (2006).
    • 89. Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol. Immunother. 53(10), 844–854 (2004).
    • 90. Grossenbacher SK, Canter RJ, Murphy WJ. Natural killer cell immunotherapy to target stem-like tumor cells. J Immunother Cancer. 19(4), 19 (2016).
    • 91. Re F, Staudacher C, Zamai L, Vecchio V, Bregni M. Killer cell Ig-like receptors ligand-mismatched, alloreactive natural killer cells lyse primary solid tumors. Cancer 107(3), 640–648 (2006).
    • 92. Krause SW, Gastpar R, Andreesen R et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin. Cancer Res. 10(11), 3699–3707 (2004).
    • 93. Ishikawa E, Tsuboi K, Saijo K et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 24(3b), 1861–1871 (2004).
    • 94. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 17(19), 6287–6297 (2011).
    • 95. Sakamoto N, Ishikawa T, Kokura S et al. Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J. Transl. Med. 13, 277 (2015).
    • 96. Szmania S, Lapteva N, Garg T et al. Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J. Immunother. 38(1), 24–36 (2015).
    • 97. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8), 3051–3057 (2005).
    • 98. Yoon SR, Lee YS, Yang SH et al. Generation of donor natural killer cells from CD34(+) progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study. Bone Marrow Transplant. 45(6), 1038–1046 (2010).
    • 99. Geller MA, Cooley S, Judson PL et al. A Phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13(1), 98–107 (2011).
    • 100. Curti A, Ruggeri L, D'addio A et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118(12), 3273–3279 (2011).
    • 101. Klingemann H, Grodman C, Cutler E et al. Autologous stem cell transplant recipients tolerate haploidentical related-donor natural killer cell-enriched infusions. Transfusion 53(2), 412–418 (2013).
    • 102. Bachanova V, Cooley S, Defor TE et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123(25), 3855–3863 (2014).
    • 103. Shaffer BC, Le Luduec JB, Forlenza C et al. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 22(4), 705–709 (2016).
    • 104. Lee DA, Denman CJ, Rondon G et al. Haploidentical natural killer cells infused before allogeneic stem cell transplantation for myeloid malignancies: a Phase I trial. Biol. Blood Marrow Transplant. 22(7), 1290–1298 (2016).
    • 105. Shah N, Li L, Mccarty J et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br. J. Haematol. 177(3), 457–466 (2017).
    • 106. Ciurea SO, Schafer JR, Bassett R et al. Phase I clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 130(16), 1857–1868 (2017).
    • 107. Arai S, Meagher R, Swearingen M et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10(6), 625–632 (2008).
    • 108. Tonn T, Schwabe D, Klingemann HG et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15(12), 1563–1570 (2013).
    • 109. Boyiadzis M, Agha M, Redner RL et al. Phase I clinical trial of adoptive immunotherapy using ‘off-the-shelf’ activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 19(10), 1225–1232 (2017).
    • 110. Ishikawa T, Okayama T, Sakamoto N et al. Phase I clinical trial of adoptive transfer of expanded natural killer cells in combination with IgG1 antibody in patients with gastric or colorectal cancer. Int. J. Cancer 142(12), 2599–2609 (2018).
    • 111. Adotevi O, Godet Y, Galaine J et al. In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: a Phase I clinical trial. Oncoimmunology 7(5), e1424673 (2018).
    • 112. Liang S, Lin M, Niu L et al. Cetuximab combined with natural killer cells therapy: an alternative to chemoradiotherapy for patients with advanced non-small cell lung cancer (NSCLC). Am. J. Cancer Res. 8(5), 879–891 (2018). • First clinical trial evaluating efficacy and safety of combination of cetuximab and NK cell therapy.
    • 113. Burns LJ, Weisdorf DJ, Defor TE et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 32(2), 177–186 (2003).
    • 114. Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med. J. 6(1), e0004 (2015).
    • 115. Locatelli F, Pende D, Mingari MC et al. Cellular and molecular basis of haploidentical hematopoietic stem cell transplantation in the successful treatment of high-risk leukemias: role of alloreactive NK cells. Front. Immunol. 4, 8 (2013).
    • 116. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562), 2097–2100 (2002).
    • 117. Rosenberg SA, Lotze MT, Muul LM et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313(23), 1485–1492 (1985).
    • 118. Becker PS, Suck G, Nowakowska P et al. Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol. Immunother. 65(4), 477–484 (2016).
    • 119. Knorr DA, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin. Immunol. 26(2), 161–172 (2014).
    • 120. Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol. Lett. 190, 159–168 (2017).
    • 121. Gillgrass A, Ashkar A. Stimulating natural killer cells to protect against cancer: recent developments. Expert Rev. Clin. Immunol. 7(3), 367–382 (2011).
    • 122. Hoffman DMJ, Gitlitz BJ, Belldegrun A, Figlin RA. Adoptive cellular therapy. Semin. Oncol. 27(2), 221–233 (2000).
    • 123. Cheng M, Chen YY, Xiao WH, Sun R, Tian ZG. NK cell-based immunotherapy for malignant diseases. Cell. Mol. Immunol. 10(3), 230–252 (2013).
    • 124. Stern M, Passweg JR, Meyer-Monard S et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant. 48(3), 433–438 (2013).
    • 125. Yoon SR, Lee YS, Yang SH et al. Generation of donor natural killer cells from CD34(+) progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study. Bone Marrow Transplant. 45(6), 1038–1046 (2010).
    • 126. Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14(2), 105–110 (2001).
    • 127. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6(8), 595–601 (2006).
    • 128. Hu Q, Ye X, Qu X et al. Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci. Rep. 8(1), 7675 (2018).
    • 129. Kobayashi H, Dubois S, Sato N et al. Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 105(2), 721–727 (2005).
    • 130. Yu P, Steel JC, Zhang M, Morris JC, Waldmann TA. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin. Cancer Res. 16(24), 6019–6028 (2010).
    • 131. Tang F, Zhao LT, Jiang Y, Ba De N, Cui LX, He W. Activity of recombinant human interleukin-15 against tumor recurrence and metastasis in mice. Cell. Mol. Immunol. 5(3), 189–196 (2008).
    • 132. Conlon KC, Lugli E, Welles HC et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33(1), 74–82 (2015). •• First clinical trial showing the antimetastatic effect of IL-15 in humans.
    • 133. Perez-Martinez A, Fernandez L, Valentin J et al. A phase I/II trial of interleukin-15-stimulated natural killer cell infusion after haplo-identical stem cell transplantation for pediatric refractory solid tumors. Cytotherapy 17(11), 1594–1603 (2015).
    • 134. Romee R, Rosario M, Berrien-Elliott MM et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8(357), 357ra123 (2016).
    • 135. Igarashi T, Wynberg J, Srinivasan R et al. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 104(1), 170–177 (2004).
    • 136. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163(10), 5211–5218 (1999).
    • 137. Karre K. Immunology - a perfect mismatch. Science 295(5562), 2029–2031 (2002).
    • 138. Veluchamy JP, Kok N, Van Der Vliet HJ, Verheul HMW, De Gruijl TD, Spanholtz J. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front. Immunol. 8, 631 (2017).
    • 139. Symons HJ, Fuchs EJ. Hematopoietic SCT from partially HLA-mismatched (HLA-haploidentical) related donors. Bone Marrow Transplant. 42(6), 365–377 (2008).
    • 140. Ruggeri L, Mancusi A, Urbani E, Velardi A. Identifying NK alloreactive donors for haploidentical hematopoietic stem cell transplantation. Methods Mol. Biol. 1393, 141–145 (2016).
    • 141. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell aloreactivity in mismatched hematopoietic transplants. Science 295(5562), 2097–2100 (2002).
    • 142. Boyiadzis M, Foon KA. Natural killer cells: from bench to cancer therapy. Expert Opin. Biol. Ther. 6(10), 967–970 (2006).
    • 143. Cheng M, Zhang J, Jiang W, Chen Y, Tian Z. Natural killer cell lines in tumor immunotherapy. Front. Med. 6(1), 56–66 (2012).
    • 144. Tam YK, Martinson JA, Doligosa K, Klingemann HG. Ex vivo expansion of the highly cytotoxic human natural killer cell line NK-92 under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5(3), 259–272 (2003).
    • 145. Davis ZB, Felices M, Verneris MR, Miller JS. Natural killer cell adoptive transfer therapy: exploiting the first line of defense against cancer. Cancer J. 21(6), 486–491 (2015).
    • 146. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev. 257(1), 107–126 (2014).
    • 147. Pegram HJ, Kershaw MH, Darcy PK. Genetic modification of natural killer cells for adoptive cellular immunotherapy. Immunotherapy 1(4), 623–630 (2009).
    • 148. Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 263(1), 68–89 (2015).
    • 149. Carlsten M, Childs RW. Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications. Front. Immunol. 10(6), 266 (2015).
    • 150. Burga RA, Nguyen T, Zulovich J et al. Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells. Cytotherapy 18(11), 1410–1421 (2016).
    • 151. Wu L, Adams M, Carter T et al. Lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin. Cancer Res. 14(14), 4650–4657 (2008).
    • 152. Leone G, Sica S, Voso MT, Rutella S, Pagano L. Treatment of acute leukaemias with monoclonal antibodies: current status and future prospects. Cardiovasc. Hematol. Agents Med. Chem. 4(1), 33–52 (2006).
    • 153. Carter P, Presta L, Gorman CM et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89(10), 4285–4289 (1992).
    • 154. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785), 177–182 (1987).
    • 155. Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905), 707–712 (1989).
    • 156. Cooley S, Burns LJ, Repka T, Miller JS. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp. Hematol. 27(10), 1533–1541 (1999).
    • 157. Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett. 232(2), 123–138 (2006).
    • 158. Seidel UJE, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front. Immunol. 27(4), 76 (2013).
    • 159. Floros T, Tarhini AA. Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21 and IL-12. Semin. Oncol. 42(4), 539–548 (2015).
    • 160. Ochoa MC, Minute L, Rodriguez I et al. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol. 95(4), 347–355 (2017).
    • 161. Steinbacher J, Baltz-Ghahremanpour K, Schmiedel BJ et al. An Fc-optimized NKG2D-immunoglobulin G fusion protein for induction of natural killer cell reactivity against leukemia. Int. J. Cancer 136(5), 1073–1084 (2015).
    • 162. Wagtmann N, Andre P, Zahn S et al. Anti-KIR (1-7F9): a fully human monoclonal antibody (mAb) that blocks KIR2DL1, -2 and -3, promoting natural killer (NK) cell-mediated lysis of tumor cells in vitro and in vivo Blood 110(11), 582 (2007).
    • 163. Romagne F, Andre P, Spee P et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114(13), 2667–2677 (2009).
    • 164. Nielsen N, Galsgaard E, Ahern D et al. FRI0020 Blocking the inhibitory CD94/NKG2A NK cell receptor with a novel ANTI-NKG2A MAB enhances the susceptibility of rheumatoid arthritis fibroblast-like synoviocytes (FLS) to NK cell-mediated cytotoxicity. Ann. Rheum. Dis. 71(Suppl. 3), 316–316 (2013).
    • 165. Ruggeri L, Urbani E, André P et al. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells. Haematologica 101(5), 626–633 (2016).