We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Anti-CTLA-4 therapy for malignant mesothelioma

    Alice Guazzelli

    Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK

    ,
    Emyr Bakker

    Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK

    ,
    Marija Krstic-Demonacos

    Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK

    ,
    Michael P Lisanti

    Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK

    ,
    Federica Sotgia

    Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK

    &
    Luciano Mutti

    *Author for correspondence:

    E-mail Address: L.Mutti@salford.ac.uk

    Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK

    Published Online:https://doi.org/10.2217/imt-2016-0123

    Immunotherapy is an emerging therapeutic strategy with a promising clinical outcome in some solid tumors, particularly metastatic melanoma. One approach to immunotherapy is immune checkpoint inhibitors, such as blockage of CTLA-4 and PD-1/PD-L1. This special report aims to describe the state of clinical trials of tremelimumab in patients with unresectable malignant mesothelioma (MM) in particular with regard to the clinical efficacy, safety and tolerability. Criticism and perspective of this treatment are also discussed. Biological and clinical considerations rule out the use of tremelimumab as single agent for MM and, more generally, the use of immune checkpoint inhibitors for MM is still largely questionable and not supported by evidences.

    References

    • 1 Robinson BWS, Musk AW, Lake RA. Malignant mesothelioma. Lancet 366(9483), 397–408 (2005).
    • 2 Ismail-Khan R, Robinson LA, Williams CC Jr, Garrett CR, Bepler G, Simon GR. Malignant pleural mesothelioma: a comprehensive review. Cancer Control. 13(4), 255–263 (2006).
    • 3 Robinson BW, Lake RA. Advances in malignant mesothelioma. N. Engl. J. Med. 353(15), 1591–1603 (2005).
    • 4 Neumann V, Loseke S, Nowak D, Herth FJ, Tannapfel A. Malignant pleural mesothelioma: incidence, etiology, diagnosis, treatment, and occupational health. Dtsch. Arztebl. Int. 110(18), 319–326 (2013).
    • 5 Carbone M, Kratzke RA, Testa JR. The pathogenesis of mesothelioma. Semin. Oncol. 29(1), 2–17 (2002).
    • 6 Testa JR, Cheung M, Pei J et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43(10), 1022–1025 (2011).
    • 7 Sekido Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis 34(7), 1413–1419 (2013).
    • 8 Napolitano A, Antoine DJ, Pellegrini L et al. HMGB1 and its hyperacetylated isoform are sensitive and specific serum biomarkers to detect asbestos exposure and to identify mesothelioma patients. Clin. Cancer Res. 22(12), 3087–3096 (2016).
    • 9 Hollevoet K, Sharon E. Fibulin-3 as a biomarker for pleural mesothelioma. N. Engl. J. Med. 368(2), 189–189 (2013).
    • 10 Cristaudo A, Foddis R, Bonotti A et al. Comparison between plasma and serum osteopontin levels: usefulness in diagnosis of epithelial malignant pleural mesothelioma. Int. J. Biol. Markers 25(3), 164–170 (2010).
    • 11 Cristaudo A, Foddis R, Vivaldi A et al. Clinical significance of serum mesothelin in patients with mesothelioma and lung cancer. Clin. Cancer Res. 13(17), 5076–5081 (2007).
    • 12 Vogelzang NJ, Rusthoven JJ, Symanowski J et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 21(14), 2636–2644 (2003).
    • 13 Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 588(2), 368–376 (2014).
    • 14 Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125(9), 3335–3337 (2015).
    • 15 Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J. Clin. 62(5), 309–335 (2012).
    • 16 Neves H, Kwok HF. Recent advances in the field of anti-cancer immunotherapy. BBA Clinical 3, 280–288 (2015).
    • 17 Hanoteau A, Moser M. Chemotherapy and immunotherapy: a close interplay to fight cancer? Oncoimmunology 5(7), e1190061 (2016).
    • 18 Blank CU, Enk A. Therapeutic use of anti-CTLA-4 antibodies. Int. Immunol. 27(1), 3–10 (2015).
    • 19 Ascierto PA, Marincola FM, Ribas A. Anti-CTLA4 monoclonal antibodies: the past and the future in clinical application. J. Transl. Med. 9 (2011).
    • 20 Hodi FS, O'day SJ, Mcdermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
    • 21 Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int. J. Clin. Oncol. 21(3), 462–473 (2016).
    • 22 Mccoy KD, Le Gros G. The role of CTLA-4 in the regulation of T-cell immune responses. Immunol. Cell Biol. 77(1), 1–10 (1999).
    • 23 Bakker E, Qattan M, Mutti L, Demonacos C, Krstic-Demonacos M. The role of microenvironment and immunity in drug response in leukemia. Biochim. Biophys. Acta 1863(3), 414–426 (2016).
    • 24 Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA. Binding of the B-cell activation antigen B7 to CD28 costimulates T-cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173(3), 721–730 (1991).
    • 25 Jago CB, Yates J, Camara NO, Lechler RI, Lombardi G. Differential expression of CTLA-4 among T-cell subsets. Clin. Exp. Immunol. 136(3), 463–471 (2004).
    • 26 Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol. Rev. 229(1), 126–144 (2009).
    • 27 Zou W, Chen L. Inhibitory B7-family molecules in the tumor microenvironment. Nat. Rev. Immunol. 8(6), 467–477 (2008).
    • 28 Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270(5238), 985–988 (1995).
    • 29 Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5), 541–547 (1995).
    • 30 Wu L, Yun Z, Tagawa T, Rey-Mcintyre K, De Perrot M. CTLA-4 blockade expands infiltrating T cells and inhibits cancer cell repopulation during the intervals of chemotherapy in murine mesothelioma. Mol. Cancer Ther. 11(8), 1809–1819 (2012).
    • 31 Tarhini AA. Tremelimumab: a review of development to date in solid tumors. Immunotherapy 5(3), 215–229 (2013).
    • 32 Currie AJ, Prosser A, Mcdonnell A et al. Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J. Immunol. 183(12), 7898–7908 (2009).
    • 33 Mansfield AS, Roden AC, Peikert T et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J. Thorac. Oncol. 9(7), 1036–1040 (2014).
    • 34 Combaz-Lair C, Galateau-Salle F, Mcleer-Florin A et al. Immune biomarkers PD-1/PD-L1 and TLR3 in malignant pleural mesotheliomas. Hum. Pathol. 52, 9–18 (2016).
    • 35 Khanna S, Thomas A, Abate-Daga D et al. Malignant mesothelioma effusions are infiltrated by CD3+ T cells highly expressing PD-L1 and the PD-L1+ tumor cells within these effusions are susceptible to ADCC by the anti-PD-L1 antibody avelumab. J. Thorac. Oncol. 11(11), 1993–2005 (2016).
    • 36 Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 59(1), 85–93 (2013).
    • 37 Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 23(Suppl. 8), viii6–9 (2012).
    • 38 Guo Y, Wang AY. Novel immune check-point regulators in tolerance maintenance. Front. Immunol. 6, 421 (2015).
    • 39 Salama AK, Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4. Clin. Cancer Res. 17(14), 4622–4628 (2011).
    • 40 Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint blockade in cancer therapy. J. Clin. Oncol. 33(17), 1974–U1161 (2015).
    • 41 Choe N, Tanaka S, Xia WJ, Hemenway DR, Roggli VL, Kagan E. Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ. Health Perspect. 105, 1257–1260 (1997).
    • 42 Anraku M, Cunningham KS, Yun Z et al. Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 135(4), 823–829 (2008).
    • 43 Hegmans JPJJ, Hemmes A, Hammad H, Boon L, Hoogsteden HC, Lambrecht BN. Mesothelioma environment comprises cytokines and T-regulatory cells that suppress immune responses. Eur. Respir. J. 27(6), 1086–1095 (2006).
    • 44 Mutti L, Valle MT, Balbi B et al. Primary human mesothelioma cells express class II MHC, ICAM-1 and B7–2 and can present recall antigens to autologous blood lymphocytes. Int. J. Cancer 78(6), 740–749 (1998).
    • 45 Sigalotti L, Coral S, Altomonte M et al. Cancer testis antigens expression in mesothelioma: role of DNA methylation and bioimmunotherapeutic implications. Br. J. Cancer 86(6), 979–982 (2002).
    • 46 Castagneto B, Zai S, Mutti L et al. Palliative and therapeutic activity of IL-2 immunotherapy in unresectable malignant pleural mesothelioma with pleural effusion – results of a Phase II study on 31 consecutive patients. Lung Cancer 31(2–3), 303–310 (2001).
    • 47 Valle MT, Porta C, Megiovanni AM et al. Transforming growth factor-beta released by PPD-presenting malignant mesothelioma cells inhibits interferon-gamma synthesis by an anti-PPD CD4+ T-cell clone. Int. J. Mol. Med. 11(2), 161–167 (2003).
    • 48 Powell A, Creaney J, Broornfield S, Van Bruggen I, Robinson B. Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer 52(2), 189–197 (2006).
    • 49 Calabro L, Sigalotti L, Fonsatti E et al. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications. J. Cell. Physiol. 226(10), 2595–2600 (2011).
    • 50 Calabro L, Morra A, Fonsatti E et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, Phase 2 trial. Lancet Oncol. 14(11), 1104–1111 (2013).
    • 51 Nishino M GM, Suda M, Ramaiya Nh, Hodi FS. Optimizing immune-related tumor response assessment: does reducing the number of lesions impact response assessment in melanoma patients treated with ipilimumab? J. Immunother. Cancer 2(17), (2014).
    • 52 Wolchok JD, Hoos A, O'day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15(23), 7412–7420 (2009).
    • 53 Nishino M. Immune-related response evaluations during immune-checkpoint inhibitor therapy: establishing a ‘common language’ for the new arena of cancer treatment. J. Immunother. Cancer 4(30), (2016).
    • 54 Weber JS, Hamid O, Chasalow SD et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J. Immunother. 35(1), 89–97 (2012).
    • 55 Vonderheide RH, Lorusso PM, Khalil M et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T Cells. Clin. Cancer Res. 16(13), 3485–3494 (2010).
    • 56 Calabro L, Morra A, Fonsatti E et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, Phase 2 study. Lancet Respir. Med. 3(4), 301–309 (2015).
    • 57 AstraZeneca reports top-line result of tremelimumab monotherapy trial in mesothelioma. www.astrazeneca.com/media-centre/press-releases/2016/astrazeneca-reports-top-line-result-of-tremelimumab-monotherapy-trial-in-mesothelioma-29022016.html.
    • 58 Kindler HL, Scherpereel A, Calabrò L et al. Tremelimumab as second- or third-line treatment of unresectable malignant mesothelioma (MM): results from the global, double-blind, placebo-controlled DETERMINE study. Presented at: 2016 ASCO Annual Meeting. Chicago, IL, USA, 3–7th June (2016).
    • 59 Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39(1), 98–106 (2016).
    • 60 Alley EW, Molife LR, Santoro A et al. Abstract CT103: clinical safety and efficacy of pembrolizumab (MK-3475) in patients with malignant pleural mesothelioma: preliminary results from KEYNOTE-028. Cancer Res. 75(15 Suppl.), CT103–CT103 (2015).
    • 61 Wolchok JD, Kluger H, Callahan MK et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369(2), 122–133 (2013).
    • 62 Larkin J, Chiarion-Sileni V, Gonzalez R et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373(1), 23–34 (2015).
    • 63 Morrissey KM, Yuraszeck TM, Li CC, Zhang Y, Kasichayanula S. Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin. Transl. Sci. 9(2), 89–104 (2016).
    • 64 Calabrò L, Morra A, Giannarelli D et al. Tremelimumab and durvalumab (MEDI4736) combination for first and second-line treatment of mesothelioma patients: the NIBIT-MESO-1 study. Presented at: 2016 ASCO Annual Meeting. Chicago, IL, USA, 3–7th June (2016).
    • 65 Feig C, Jones JO, Kraman M et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110(50), 20212–20217 (2013).