We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Laboratory diagnosis of HSV and varicella zoster virus infections

    Feinan Fan

    Department of Laboratory Medicine, Futian Hospital, Guangdong Medical College, Shenzhen, China

    Department of Laboratory Medicine, Memorial Sloan–Kettering Cancer Center, New York, NY, USA

    ,
    Stephen Day

    Hologic, Inc., Madison, WI, USA

    ,
    Xuedong Lu

    Department of Laboratory Medicine, Futian Hospital, Guangdong Medical College, Shenzhen, China

    &
    Yi-Wei Tang

    *Author for correspondence:

    E-mail Address: tangy@mskcc.org

    Department of Laboratory Medicine, Memorial Sloan–Kettering Cancer Center, New York, NY, USA

    Department of Pathology & Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA

    Published Online:https://doi.org/10.2217/fvl.14.61

    ABSTRACT 

    HSV and varicella zoster virus (VZV) are common pathogens of skin and mucous membranes and the CNS. Their rapid and accurate diagnosis is essential for their treatment as well as infection control. Cytological and morphological examination, specific antibody detection methods and virus isolation all have their own limitations in clinical practice. In recent years, molecular methods have become the primary diagnostic methods for the detection and differentiation of HSV1/2 and VZV due to their high sensitivity, specificity, rapid test turnaround time and potential for high throughput and automation. Although molecular assays detect HSV1/2 and VZV more quickly, the clinical significance of positive results may vary in individual patients.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Steiner I. Herpes virus infection of the peripheral nervous system. Handb. Clin. Neurol. 115, 543–558 (2013).
    • 2 Norberg P. Divergence and genotyping of human alpha-herpesviruses: an overview. Infect. Genet. Evol. 10(1), 14–25 (2010).
    • 3 Van De Perre P, Segondy M, Foulongne V et al. Herpes simplex virus and HIV-1: deciphering viral synergy. Lancet Infect. Dis. 8(8), 490–497 (2008).
    • 4 Corey L, Whitley RJ, Stone EF, Mohan K. Difference between herpes simplex virus type 1 and type 2 neonatal encephalitis in neurological outcome. Lancet 1(8575–8576), 1–4 (1988).
    • 5 Bader MS. Herpes zoster: diagnostic, therapeutic, and preventive approaches. Postgrad. Med. 125(5), 78–91 (2013).•• One of the first papers to demonstrate the usefulness of molecular methods in HSV etiology diagnosis.
    • 6 Gershon MD, Gershon AA. VZV infection of keratinocytes: production of cell-free infectious virions in vivo. Curr. Top. Microbiol. Immunol. 342, 173–188 (2010).
    • 7 Zuckerman RA, Limaye AP. Varicella zoster virus (VZV) and herpes simplex virus (HSV) in solid organ transplant patients. Am. J. Transplant. 13(Suppl. 3), 55–66 (2013).
    • 8 Schiffer JT, Abu-Raddad L, Mark KE et al. Frequent release of low amounts of herpes simplex virus from neurons: results of a mathematical model. Sci. Transl. Med. 1(7), 7ra16 (2009).
    • 9 Mertz GJ, Benedetti J, Ashley R, Selke SA, Corey L. Risk factors for the sexual transmission of genital herpes. Ann. Int. Med. 116(3), 197–202 (1992).
    • 10 Druce J, Catton M, Chibo D et al. Utility of a multiplex PCR assay for detecting herpesvirus DNA in clinical samples. J. Clin. Microbiol. 40(5), 1728–1732 (2002).
    • 11 Kalman CM, Laskin OL. Herpes zoster and zosteriform herpes simplex virus infections in immunocompetent adults. Am. J. Med. 81(5), 775–778 (1986).
    • 12 Jain S, Wyatt D, McCaughey C, O'Neill HJ, Coyle PV. Nested multiplex polymerase chain reaction for the diagnosis of cutaneous herpes simplex and herpes zoster infections and a comparison with electronmicroscopy. J. Med. Virol. 63(1), 52–56 (2001).
    • 13 Sullivan M, Sams R 2nd, Jamieson B, Holt J. Clinical inquiries. What is the best test to detect herpes in skin lesions? J. Fam. Pract. 55(4), 346, 348 (2006).
    • 14 Nahass GT, Goldstein BA, Zhu WY, Serfling U, Penneys NS, Leonardi CL. Comparison of Tzanck smear, viral culture, and DNA diagnostic methods in detection of herpes simplex and varicella–zoster infection. JAMA 268(18), 2541–2544 (1992).
    • 15 Frisch S, Guo AM. Diagnostic methods and management strategies of herpes simplex and herpes zoster infections. Clin. Geriat. Med. 29(2), 501–526 (2013).
    • 16 Coffin SE, Hodinka RL. Utility of direct immunofluorescence and virus culture for detection of varicella-zoster virus in skin lesions. J. Clin. Microbiol. 33(10), 2792–2795 (1995).
    • 17 Zirn JR, Tompkins SD, Huie C, Shea CR. Rapid detection and distinction of cutaneous herpesvirus infections by direct immunofluorescence. J. Am. Acad. Dermatol. 33(5 Pt 1), 724–728 (1995).
    • 18 Anderson NW, Buchan BW, Ledeboer NA. Light microscopy, culture, molecular, and serologic methods for detection of herpes simplex virus. J. Clin. Microbiol. 52(1), 2–8 (2014).
    • 19 Caviness AC, Oelze LL, Saz UE, Greer JM, Demmler-Harrison GJ. Direct immunofluorescence assay compared with cell culture for the diagnosis of mucocutaneous herpes simplex virus infections in children. J. Clin. Virol. 49(1), 58–60 (2010).• Excellent and state-of-the-art minireview article.
    • 20 Chan EL, Brandt K, Horsman GB. Comparison of Chemicon SimulFluor direct fluorescent antibody staining with cell culture and shell vial direct immunoperoxidase staining for detection of herpes simplex virus and with cytospin direct immunofluorescence staining for detection of varicella-zoster virus. Clin. Diagn. Lab. Immunol. 8(5), 909–912 (2001).
    • 21 Brumback BG, Farthing PG, Castellino SN. Simultaneous detection of and differentiation between herpes simplex and varicella-zoster viruses with two fluorescent probes in the same test system. J. Clin. Microbiol. 31(12), 3260–3263 (1993).
    • 22 Ramaswamy M, McDonald C, Smith M et al. Diagnosis of genital herpes by real time PCR in routine clinical practice. Sex. Transm. Infect. 80(5), 406–410 (2004).
    • 23 Huang YT, Hite S, Duane V, Yan H. CV-1 and MRC-5 mixed cells for simultaneous detection of herpes simplex viruses and varicella zoster virus in skin lesions. J. Clin. Virol. 24(1–2), 37–43 (2002).
    • 24 Erlich KS. Laboratory diagnosis of herpesvirus infections. Clin. Lab. Med. 7(4), 759–776 (1987).
    • 25 Weinberg A, Clark JC, Schneider SA, Forghani B, Levin MJ. Improved detection of varicella zoster infection with a spin amplification shell vial technique and blind passage. Clin. Diagn. Virol. 5(1), 61–65 (1996).
    • 26 Singh A, Preiksaitis J, Ferenczy A, Romanowski B. The laboratory diagnosis of herpes simplex virus infections. Can. J. Infect. Dis. Med. Microbiol. 16(2), 92–98 (2005).
    • 27 Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin. Microbiol. Rev. 20(1), 49–78 (2007).•• Excellent and comprehensive review article.
    • 28 Miller NS, Yen-Lieberman B, Poulter MD, Tang YW, Granato PA. Comparative clinical evaluation of the IsoAmp® HSV Assay with ELVIS® HSV culture/ID/typing test system for the detection of herpes simplex virus in genital and oral lesions. J. Clin. Virol. 54(4), 355–358 (2012).• Describes the first simple and rapid molecular device that has potential for point-of-care testing.
    • 29 Patel N, Kauffmann L, Baniewicz G, Forman M, Evans M, Scholl D. Confirmation of low–titer, herpes simplex virus-positive specimen results by the enzyme-linked virus-inducible system (ELVIS) using PCR and repeat testing. J. Clin. Microbiol. 37(12), 3986–3989 (1999).
    • 30 Wilson DA, Yen-Lieberman B, Schindler S, Asamoto K, Schold JD, Procop GW. Should varicella-zoster virus culture be eliminated? A comparison of direct immunofluorescence antigen detection, culture, and PCR, with a historical review. J. Clin. Microbiol. 50(12), 4120–4122 (2012).
    • 31 Hodinka RL. Point: is the era of viral culture over in the clinical microbiology laboratory? J. Clin. Microbiol. 51(1), 2–4 (2013).• Nice comparative review of current laboratory techniques for the detection of varicella zoster virus.
    • 32 Guido M, Tinelli A, De Donno A et al. Susceptibility to varicella-zoster among pregnant women in the province of Lecce, Italy. J. Clin. Virol. 53(1), 72–76 (2012).
    • 33 Heininger U, Seward JF. Varicella. Lancet 368(9544), 1365–1376 (2006).
    • 34 Grahn A, Studahl M, Nilsson S, Thomsson E, Backstrom M, Bergstrom T. Varicella-zoster virus (VZV) glycoprotein E is a serological antigen for detection of intrathecal antibodies to VZV in central nervous system infections, without cross-reaction to herpes simplex virus 1. Clin. Vac. Immunol. 18(8), 1336–1342 (2011).
    • 35 Laderman EI, Whitworth E, Dumaual E et al. Rapid, sensitive, and specific lateral-flow immunochromatographic point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and whole blood. Clin. Vac. Immunol. 15(1), 159–163 (2008).
    • 36 Nagel MA, Forghani B, Mahalingam R et al. The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology 68(13), 1069–1073 (2007).
    • 37 Martins TB, Welch RJ, Hill HR, Litwin CM. Comparison of a multiplexed herpes simplex virus type-specific immunoglobulin G serology assay to immunoblot, Western blot, and enzyme-linked immunosorbent assays. Clin. Vac. Immunol. 16(1), 55–60 (2009).
    • 38 Sauerbrei A, Wutzler P. Novel recombinant ELISA assays for determination of type-specific IgG antibodies against HSV-1 and HSV-2. J. Virol. Meth. 144(1–2), 138–142 (2007).
    • 39 Gorander S, Svennerholm B, Liljeqvist JA. Secreted portion of glycoprotein g of herpes simplex virus type 2 is a novel antigen for type-discriminating serology. J. Clin. Microbiol. 41(8), 3681–3686 (2003).
    • 40 Morrow R, Friedrich D. Performance of a novel test for IgM and IgG antibodies in subjects with culture-documented genital herpes simplex virus-1 or -2 infection. Clin. Microbiol. Infect. 12(5), 463–469 (2006).
    • 41 Rowley AH, Whitley RJ, Lakeman FD, Wolinsky SM. Rapid detection of herpes-simplex-virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. Lancet 335(8687), 440–441 (1990).
    • 42 Tang YW, Mitchell PS, Espy MJ, Smith TF, Persing DH. Molecular diagnosis of herpes simplex virus infections in the central nervous system. J. Clin. Microbiol. 37(7), 2127–2136 (1999).•• One of the first papers to demonstrate the usefulness of molecular methods in HSV etiology diagnosis.
    • 43 Lemieux B, Li Y, Kong H, Tang YW. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses. Expert Rev. Mol. Diagn. 12(5), 437–443 (2012).
    • 44 Selvaraju SB, Wurst M, Horvat RT, Selvarangan R. Evaluation of three analyte-specific reagents for detection and typing of herpes simplex virus in cerebrospinal fluid. Diagn. Microbiol. Infect. Dis. 63(3), 286–291 (2009).• Review article that introduces and contrasts the current US FDA-approved device for HSV detection.
    • 45 Van Der Pol B, Warren T, Taylor SN et al. Type-specific identification of anogenital herpes simplex virus infections by use of a commercially available nucleic acid amplification test. J. Clin. Microbiol. 50(11), 3466–3471 (2012).
    • 46 Kim HJ, Tong Y, Tang W et al. A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2. J. Clin. Virol. 50(1), 26–30 (2011).
    • 47 Fan F, Stiles J, Mikhlina A, Lu X, Babady NE, Tang YW. Clinical validation of the Lyra Direct HSV1+2/VZV Assay for simultaneous detection and differentiation of three herpes viruses in cutaneous and mucosal lesions. J. Clin. Microbiol. 52(10), 3799–3801 (2014).• Describes clinical validation results of the first US FDA-cleared multiplex PCR assay for detection and differentiation of HSV-1, HSV-2 and varicella zoster virus.
    • 48 Gitman MR, Ferguson D, Landry ML. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens. J. Clin. Microbiol. 51(11), 3765–3769 (2013).
    • 49 IMDx HSV-1/2 for Abbott m2000 summary. www.accessdata.fda.gov/cdrh_docs/pdf14/K140198.pdf.
    • 50 Evaluation of automatic class III designation for Lyra™ Direct HSV 1 + 2/VZV assay. Decision summary. www.accessdata.fda.gov/cdrh_docs/reviews/K133448.pdf.
    • 51 Kinonen CL, Gleason BC, Thomas AB, Kaul KL, Cibull TL. Dermal hypersensitivity reaction: a PCR-confirmed pattern of herpetic dermatitis. J. Cutan. Pathol. 39(10), 929–935 (2012).
    • 52 Sankuntaw N, Sukprasert S, Engchanil C et al. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system. Mol. Cell. Probes 25(2–3), 114–120 (2011).
    • 53 Espy MJ, Uhl JR, Sloan LM et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19(1), 165–256 (2006).
    • 54 Cobo F. Application of molecular diagnostic techniques for viral testing. Open Virol. J. 6, 104–114 (2012).
    • 55 Mehta SK, Tyring SK, Gilden DH et al. Varicella-zoster virus in the saliva of patients with herpes zoster. J. Infect. Dis. 197(5), 654–657 (2008).
    • 56 Leung J, Harpaz R, Baughman AL et al. Evaluation of laboratory methods for diagnosis of varicella. Clin. Infect. Dis. 51(1), 23–32 (2010).
    • 57 Tan HH, Goh CL. Viral infections affecting the skin in organ transplant recipients: epidemiology and current management strategies. Am. J. Clin. Dermatol. 7(1), 13–29 (2006).
    • 58 Bennett S, Carman WF, Gunson RN. The development of a multiplex real-time PCR for the detection of herpes simplex virus 1 and 2, varizella zoster virus, adenovirus and Chlamydia trachomatis from eye swabs. J. Virol. Meth. 189(1), 143–147 (2013).
    • 59 Kannangai R, Sachithanandham J, Mahadevan A et al. Association of neurotropic viruses in HIV-infected individuals who died of secondary complications of tuberculosis, cryptococcosis, or toxoplasmosis in South India. J. Clin. Microbiol. 51(3), 1022–1025 (2013).
    • 60 Tan TY, Zou H, Ong DC et al. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus. Diagn. Mol. Pathol. 22(4), 245–248 (2013).
    • 61 Buelow DR, Bankowski MJ, Fofana D, Gu Z, Pounds S, Hayden RT. Comparison of two multiplexed PCR assays for the detection of HSV-1, HSV-2, and VZV with extracted and unextracted cutaneous and mucosal specimens. J. Clin. Virol. 58(1), 84–88 (2013).
    • 62 Legoff J, Feghoul L, Mercier-Delarue S et al. Broad-range PCR-electrospray ionization mass spectrometry for detection and typing of adenovirus and other opportunistic viruses in stem cell transplant patients. J. Clin. Microbiol. 51(12), 4186–4192 (2013).
    • 63 Leveque N, Van Haecke A, Renois F, Boutolleau D, Talmud D, Andreoletti L. Rapid virological diagnosis of central nervous system infections by use of a multiplex reverse transcription-PCR DNA microarray. J. Clin. Microbiol. 49(11), 3874–3879 (2011).
    • 64 Sakai K, Wakasugi S, Muchemwa FC, Ihn H. Quick detection of herpes viruses from skin vesicles and exudates without nucleic acid extraction using multiplex PCR. Biosci. Trends 2(4), 164–168 (2008).
    • 65 Pandori MW, Lei J, Wong EH, Klausner J, Liska S. Real-time PCR for detection of herpes simplex virus without nucleic acid extraction. BMC Infect. Dis. 6, 104 (2006).
    • 66 Binkhamis K, Al-Siyabi T, Heinstein C, Hatchette TF, Leblanc JJ. Molecular detection of varicella zoster virus while keeping an eye on the budget. J. Virol. Meth. 202, 24–27 (2014).
    • 67 Frobert E, Billaud G, Casalegno JS et al. The clinical interest of HSV1 semi-quantification in bronchoalveolar lavage. J. Clin. Virol. 58(1), 265–268 (2013).
    • 68 Piret J, Boivin G. Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev. Med. Virol. 24(3), 186–218 (2014).
    • 69 Van Der Beek MT, Claas EC, Van Der Blij-De Brouwer CS et al. Rapid susceptibility testing for herpes simplex virus type 1 using real-time PCR. J. Clin. Virol. 56(1), 19–24 (2013).
    • 70 Ihira M, Higashimoto Y, Kawamura Y et al. Cycling probe technology to quantify and discriminate between wild-type varicella-zoster virus and Oka vaccine strains. J. Virol. Meth. 193(2), 308–313 (2013).
    • 71 Loparev VN, Argaw T, Krause PR, Takayama M, Schmid DS. Improved identification and differentiation of varicella-zoster virus (VZV) wild-type strains and an attenuated varicella vaccine strain using a VZV open reading frame 62-based PCR. J. Clin. Microbiol. 38(9), 3156–3160 (2000).
    • 72 Tang YW, Allawi HT, Deleon-Carnes M, Li H, Day SP, Schmid D. Detection and differentiation of wild-type and vaccine mutant varicella–zoster viruses using an Invader Plus method. J. Clin. Virol. 40(2), 129–134 (2007).
    • 73 Thiele S, Borschewski A, Kuchler J, Bieberbach M, Voigt S, Ehlers B. Molecular analysis of varicella vaccines and varicella-zoster virus from vaccine-related skin lesions. Clin. Vac. Immunol. 18(7), 1058–1066 (2011).
    • 74 Toi CS, Dwyer DE. Differentiation between vaccine and wild-type varicella-zoster virus genotypes by high-resolution melt analysis of single nucleotide polymorphisms. J. Clin. Virol. 43(1), 18–24 (2008).
    • 75 Schmid DS, Jumaan AO. Impact of varicella vaccine on varicella-zoster virus dynamics. Clin. Microbiol. Rev. 23(1), 202–217 (2010).
    • 76 Papaevangelou V, Quinlivan M, Lockwood J et al. Subclinical VZV reactivation in immunocompetent children hospitalized in the ICU associated with prolonged fever duration. Clin. Microbiol. Infect. 19(5), E245–E251 (2013).
    • 77 Mancuso R, Delbue S, Borghi E et al. Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J. Med. Virol. 79(2), 192–199 (2007).
    • 78 Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 4(6), 337–348 (2004).
    • 79 Caliendo AM, Gilbert DN, Ginocchio CC et al. Better tests, better care: improved diagnostics for infectious diseases. Clin. Infect. Dis. 57(Suppl. 3), S139–S170 (2013).• Provides a deep look at the general principles, diagnostic value and limitations of the most current PCR-based platforms as they evolve from bench to bedside.