We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A new paradigm for the roles of the genome in ssRNA viruses

    Peter G Stockley

    * Author for correspondence

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK. .

    ,
    Neil A Ranson

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK

    &
    Reidun Twarock

    Departments of Biology & Mathematics, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK

    Published Online:https://doi.org/10.2217/fvl.12.84

    Recent work with RNA phages and an ssRNA plant satellite virus challenges the widely held view that the sequences and structures of genomic RNAs are unimportant for virion assembly. In the T=3 phages, RNA–coat protein interactions occur throughout the genome, defining the quasiconformers of their protein shells. In the plant virus, there are multiple packaging signals dispersed throughout the genome that overcome electrostatic barriers to protein self-assembly. Both viral coat proteins cause the solution structures of their cognate genomes to collapse into a form that is readily encapsidated in a two-stage assembly process. Such similar behavior in two structurally unrelated viral protein folds implies that this might be a conserved feature of many viral assembly reactions. These results suggest a highly defined structure for the RNA in the virions, consistent with recent structural studies. They also have implications both for subsequent genome release during infection and for the evolution of viral sequences.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Schneemann A. The structural and functional role of RNA in icosahedral virus assembly. Annu. Rev. Microbiol.60,51–67 (2006).
    • Rossmann MG, Johnson JE. Icosahedral RNA virus structure. Annu. Rev. Biochem.58,533–573 (1989).
    • Cadena-Nava RD, Comas-Garcia M, Garmann RF et al. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio. J. Virol.86(6),3318–3326 (2012).
    • Bruinsma RF. Physics of RNA and viral assembly. Eur. Phys. J. E Soft Matter19(3),303–310 (2006).
    • Morozov AY, Bruinsma RF, J Rudnick. Assembly of viruses and the pseudo-law of mass action. J. Chem. Phys.131(15),155101 (2009).
    • Bruinsma RF, WM Gelbart, Reguera D et al. Viral self-assembly as a thermodynamic process. Phys. Rev. Lett.90(24),248101 (2003).
    • Endres DM, Miyahara M, Moisant P, Zlotnick A. A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Protein Sci.14(6),1518–1525 (2005).
    • Fejer SN, Chakrabarti D, Wales DJ. Emergent complexity from simple anisotropic building blocks: shells, tubes, and spirals. ACS Nano4(1),219–228 (2010).
    • Hagan MF, Chandler D. Dynamic pathways for viral capsid assembly. Biophys. J.91(1),42–54 (2006).
    • 10  Keef T, Micheletti C, Twarock R. Master equation approach to the assembly of viral capsids. J. Theor. Biol.242(3),713–721 (2006).
    • 11  Keef T, Taormina A, Twarock R. Assembly models for Papovaviridae based on tiling theory. Phys. Biol.2(3),175–188 (2005).
    • 12  Kumar MS, Schwartz R. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly. Phys. Biol.7(4),045005 (2010).
    • 13  Lee B, Leduc PR, Schwartz R. Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Green’s function reaction dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(3 Pt 1),031911 (2008).
    • 14  Moisant P, Neeman H, Zlotnick A. Exploring the paths of (virus) assembly. Biophys. J.99(5),1350–1357 (2010).
    • 15  Rapaport DC. Self-assembly of polyhedral shells: a molecular dynamics study. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5 Pt 1),051905 (2004).
    • 16  Sitharam M, Agbandje-McKenna M. Modeling virus self-assembly pathways: avoiding dynamics using geometric constraint decomposition. J. Comput. Biol.13(6),1232–1265 (2006).
    • 17  Sweeney B, Zhang T, Schwartz R. Exploring the parameter space of complex self-assembly through virus capsid models. Biophys. J.94(3),772–783 (2008).
    • 18  Zandi R, van der Schoot P, Reguera D et al. Classical nucleation theory of virus capsids. Biophys. J.90(6),1939–1948 (2006).
    • 19  Zlotnick A. To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. J. Mol. Biol.241(1),59–67 (1994).
    • 20  Bancroft JB, Hills GJ, Markham R. A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology31(2),354–379 (1967).
    • 21  Bancroft JB, Hiebert E, Bracker CE. The effects of various polyanions on shell formation of some spherical viruses. Virology39(4),924–930 (1969).
    • 22  Johnson JM, Willits DA, Young MJ et al. Interaction with capsid protein alters RNA structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus. J. Mol. Biol.335(2),455–464 (2004).
    • 23  Harrison SC, Olson AJ, Schutt CE et al. Tomato bushy stunt virus at 2.9 A resolution. Nature276(5686),368–373 (1978).▪ Defines the important structural questions relating to quasiequivalent ssRNA virions.
    • 24  Ling CM, Hung PP, Overby LR. Independent assembly of Qbeta and MS2 phages in doubly infected Escherichia coli. Virology40(4),920–929 (1970).
    • 25  Lodish HF, Zinder ND. Mutants of the bacteriophage f2. 8. Control mechanisms for phage-specific syntheses. J. Mol. Biol.19(2),333–348 (1966).
    • 26  Gott JM, Wilhelm LJ, Uhlenbeck OC. RNA binding properties of the coat protein from bacteriophage GA. Nucleic Acids Res.19(23),6499–6503 (1991).
    • 27  Qu F, Morris TJ. Encapsidation of turnip crinkle virus is defined by a specific packaging signal and RNA size. J. Virol.71(2),1428–1435 (1997).
    • 28  Bunka DH, Lane SW, Lane CL et al. Degenerate RNA packaging signals in the genome of satellite tobacco necrosis virus: implications for the assembly of a T=1 capsid. J. Mol. Biol.413(1),51–65 (2011).
    • 29  Lane SW, Dennis CA, Lane CL et al. Construction and crystal structure of recombinant STNV capsids. J. Mol. Biol.413(1),41–50 (2011).
    • 30  Kim DY, Firth AE, Atasheva S et al. Conservation of a packaging signal and the viral genome RNA packaging mechanism in alphavirus evolution. J. Virol.85(16),8022–8036 (2011).
    • 31  Frolova E, Frolov I, Schlesinger S. Packaging signals in alphaviruses. J. Virol.71(1),248–258 (1997).
    • 32  Gell C, Sabir T, Westwood J et al. Single-molecule fluorescence resonance energy transfer assays reveal heterogeneous folding ensembles in a simple RNA stem-loop. J. Mol. Biol.384(1),264–278 (2008).
    • 33  Lago H, Parrott AM, Moss T et al. Probing the kinetics of formation of the bacteriophage MS2 translational operator complex: identification of a protein conformer unable to bind RNA. J. Mol. Biol.305(5),1131–1144 (2001).
    • 34  Carey J, Uhlenbeck OC. Kinetic and thermodynamic characterization of the R17 coat protein–ribonucleic acid interaction. Biochemistry22(11),2610–2615 (1983).
    • 35  Carey J, Cameron V, de Haseth PL, Uhlenbeck OC. Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry22(11),2601–2610 (1983).
    • 36  Stockley PG, Baron AJ, Wild CM et al. Dissecting the molecular details of prokaryotic transcriptional control by surface plasmon resonance: the methionine and arginine repressor proteins. Biosens. Bioelectron.13(6),637–650 (1998).
    • 37  Lago H, Fonseca SA, Murray JB et al. Dissecting the key recognition features of the MS2 bacteriophage translational repression complex. Nucleic Acids Res.26(5),1337–1344 (1998).
    • 38  Rowsell S, Stonehouse NJ, Convery MA et al. Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat. Struct. Biol.5(11),970–975 (1998).
    • 39  Convery MA, Rowsell S, NJ Stonehouse et al. Crystal structure of an RNA aptamer–protein complex at 2.8 A resolution. Nat. Struct. Biol.5(2),133–139 (1998).
    • 40  Valegard K, Murray JB, Stockley PG et al. Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature371(6498),623–626 (1994).▪ Reports the high-resolution structure of TR bound to the phage coat protein shell, allowing the essential structural recognition features to be determined.
    • 41  Valegard K, Murray JB, Stonehouse NJ et al. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions. J. Mol. Biol.270(5),724–738 (1997).
    • 42  Grahn E, Moss T, Helgstrand C et al. Structural basis of pyrimidine specificity in the MS2 RNA hairpin–coat-protein complex. RNA7(11),1616–1627 (2001).
    • 43  Grahn E, Stonehouse NJ, Adams CJ et al. Deletion of a single hydrogen bonding atom from the MS2 RNA operator leads to dramatic rearrangements at the RNA–coat protein interface. Nucleic Acids Res.28(23),4611–4616 (2000).
    • 44  Grahn E, Stonehouse NJ, Murray JB et al. Crystallographic studies of RNA hairpins in complexes with recombinant MS2 capsids: implications for binding requirements. RNA5(1),131–138 (1999).
    • 45  Helgstrand C, Grahn E, Moss T et al. Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins. Nucleic Acids Res.30(12),2678–2685 (2002).
    • 46  Horn WT, Convery MA, Stonehouse NJ et al. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand–RNA interactions. RNA10(11),1776–1782 (2004).
    • 47  Horn WT, Tars K, Grahn E et al. Structural basis of RNA binding discrimination between bacteriophages Qbeta and MS2. Structure14(3),487–495 (2006).
    • 48  Plevka P, Kazaks A, Voronkova T et al. The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly. J. Mol. Biol.391(3),635–647 (2009).
    • 49  Tars K, Fridborg K, Bundule M et al. The three-dimensional structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7-A resolution. Virology272(2),331–337 (2000).
    • 50  Golmohammadi R, Fridborg K, Bundule M et al. The crystal structure of bacteriophage Q beta at 3.5 A resolution. Structure4(5),543–554 (1996).
    • 51  Golmohammadi R, Valegard K, Fridborg K et al. The refined structure of bacteriophage MS2 at 2.8 A resolution. J. Mol. Biol.234(3),620–639 (1993).
    • 52  Liljas L, Fridborg K, Valegard K et al. Crystal structure of bacteriophage fr capsids at 3.5 A resolution. J. Mol. Biol.244(3),279–290 (1994).
    • 53  Beckett D, Uhlenbeck OC. Ribonucleoprotein complexes of R17 coat protein and a translational operator analog. J. Mol. Biol.204(4),927–938 (1988).
    • 54  Beckett D, Wu HN, Uhlenbeck OC. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly. J. Mol. Biol.204(4),939–947 (1988).
    • 55  Dykeman EC, Stockley PG, Twarock R. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome. J. Mol. Biol. (2013) (In press).
    • 56  Stockley PG, Rolfsson O, Thompson GS et al. A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. J. Mol. Biol.369(2),541–552 (2007).▪▪ Identifies the mechanistic basis of quasiequivalent conformational switching during the assembly of MS2.
    • 57  Morton VL, Dykeman EC, Stonehouse NJ et al. The impact of viral RNA on assembly pathway selection. J. Mol. Biol.401(2),298–308 (2010).
    • 58  Morton VL, Stockley PG, Stonehouse NJ et al. Insights into virus capsid assembly from non-covalent mass spectrometry. Mass Spectrom. Rev.27(6),575–595 (2008).
    • 59  Caspar DL, A Klug. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol.27,1–24 (1962).
    • 60  Dykeman EC, Grayson NE, Toropova K et al. Simple rules for efficient assembly predict the layout of a packaged viral RNA. J. Mol. Biol.408(3),399–407 (2011).▪▪ Reveals the first structure of an ssRNA virus showing asymmetric distribution of the RNA along the fivefold axis, and suggested that this is a direct consequence of the dimer switching model requiring the RNA to take a defined (Hamiltonian) path along the inner protein shell.
    • 61  Dykeman EC, Stockley PG, Twarock R. Dynamic allostery controls coat protein conformer switching during MS2 phage assembly. J. Mol. Biol.395(5),916–923 (2010).▪ Shows that RNA allostery occurs via effects on protein dynamics and is not sequence specific.
    • 62  Dykeman EC, Twarock R. All-atom normal-mode analysis reveals an RNA-induced allostery in a bacteriophage coat protein. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(3 Pt 1),031908 (2010).
    • 63  Morton VL, Burkitt W, O’Connor G et al. RNA-induced conformational changes in a viral coat protein studied by hydrogen/deuterium exchange mass spectrometry. Phys. Chem. Chem. Phys.12(41),13468–13475 (2010).
    • 64  Basnak G, Morton VL, Rolfsson O et al. Viral genomic single-stranded RNA directs the pathway toward a T=3 capsid. J. Mol. Biol.395(5),924–936 (2010).
    • 65  Rolfsson O, Toropova K, Ranson NA et al. Mutually-induced conformational switching of RNA and coat protein underpins efficient assembly of a viral capsid. J. Mol. Biol.401(2),309–322 (2010).
    • 66  Elsawy KM, Caves LS, Twarock R. The impact of viral RNA on the association rates of capsid protein assembly: bacteriophage MS2 as a case study. J. Mol. Biol.400(4),935–947 (2010).
    • 67  Valegard K, Liljas L, Fridborg K et al. The three-dimensional structure of the bacterial virus MS2. Nature345(6270),36–41 (1990).
    • 68  Koning R, van den Worm S, Plaisier JR et al. Visualization by cryo-electron microscopy of genomic RNA that binds to the protein capsid inside bacteriophage MS2. J. Mol. Biol.332(2),415–422 (2003).
    • 69  van den Worm SH, Koning RI, Warmenhoven HJ et al. Cryo electron microscopy reconstructions of the Leviviridae unveil the densest icosahedral RNA packing possible. J. Mol. Biol.363(4),858–865 (2006).
    • 70  Toropova K, Basnak G, Twarock R et al. The three-dimensional structure of genomic RNA in bacteriophage MS2: implications for assembly. J. Mol. Biol.375(3),824–836 (2008).
    • 71  Hamilton WR. An account of the Icosian calculus. Proc. R. Ir. Acad.6,415–416 (1858).
    • 72  Knapman TW, VL Morton, NJ Stonehouse et al. Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry. Rapid Commun. Mass Spectrom.24(20),3033–3042 (2010).
    • 73  Borodavka A, Tuma R, Stockley PG. Evidence that viral RNAs have evolved for efficient, two-stage packaging. Proc. Natl. Acad. Sci. USA109,15769–15774 (2012).
    • 74  Borodavka A, Tuma R, Stockley PG. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol.10,1–9 (2013).▪▪ Demonstrates using single-molecule fluorescence assays that RNA encapsidation in vitro is specific at low concentrations.
    • 75  Groeneveld H. Secondary Structure of Bacteriophage MS2 RNA: Translational Control by Kinetics of RNA Folding. PhD Thesis, University of Leiden, Leiden, The Netherlands (1997).
    • 76  Olsthoorn RCL. Structure and Evolution of RNA Phages. PhD Thesis, University of Leiden, Leiden, The Netherlands (1996).
    • 77  Krahn PM, O’Callaghan RJ, Paranchych W. Stages in phage R17 infection. VI. Injection of A protein and RNA into the host cell. Virology47(3),628–637 (1972).
    • 78  Shiba T, Suzuki Y. Localization of A protein in the RNA–A protein complex of RNA phage MS2. Biochim. Biophys. Acta654(2),249–255 (1981).
    • 79  Schwartz R, Garcea RL, Berger B. “Local rules” theory applied to polyomavirus polymorphic capsid assemblies. Virology268(2),461–470 (2000).
    • 80  Schwartz R, Shor PW, Prevelige PE Jr et al. Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J.75(6),2626–2636 (1998).
    • 81  Brinton CC Jr, Gemski P Jr, Carnahan J. A new type of bacterial pilus genetically controlled by the fertility factor of E. Coli K 12 and its role in chromosome transfer. Proc. Natl Acad. Sci. USA52,776–783 (1964).
    • 82  Toropova K, Stockley PG, Ranson NA. Visualising a viral RNA genome poised for release from its receptor complex. J. Mol. Biol.408(3),408–419 (2011).▪▪ Describes the first structure of an ssRNA virus showing asymmetric distribution of the RNA along the fivefold axis, and suggests that this is a direct consequence of the dimer switching model requiring the RNA to take a defined (Hamiltonian) path along the inner protein shell.
    • 83  Dent KC, Thompson R, Barker AM et al. The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release. Structure (2013) (In press).
    • 84  Nicastro D, Schwartz C, Pierson J et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science313(5789),944–948 (2006).
    • 85  Zhang X, Xiang Y, Dunigan DD et al. Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. Proc. Natl. Acad. Sci. USA108,14837–14842 (2011).
    • 86  Xiao C, Kuznetzov YG, Sun S et al. Structural studies of the giant mimivirus. PLoS Biol.7,e92 (2009).
    • 87  van der Schoot P, Bruinsma R. Electrostatics and the assembly of an RNA virus. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6 Pt 1),061928 (2005).
    • 88  Kivenson A, Hagan MF. Mechanisms of capsid assembly around a polymer. Biophys. J.99(2),619–628 (2010).
    • 89  Hagan MF. A theory for viral capsid assembly around electrostatic cores. J. Chem. Phys.130(11),114902 (2009).
    • 90  Dykeman EC, Stockley PG, Twarock R. Building a viral capsid in the presence of genomic RNA. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.87(2),022717 (2013).▪▪ Demonstrates the impact of packaging signals on capsid assembly efficiency in a model system.
    • 91  Ford RJ, Barker AM, Bakker SE et al. Sequence-specific, RNA–protein interactions overcome electrostatic barriers preventing assembly of satellite tobacco necrosis virus coat protein. J. Mol. Biol.425,1050–1064 (2013).
    • 92  Hogle JM, Maeda A, Harrison SC. Structure and assembly of turnip crinkle virus. I. x-ray crystallographic structure analysis at 3.2 A resolution. J. Mol. Biol.191(4),625–638 (1986).
    • 93  Sorger PK, Stockley PG, Harrison SC. Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. J. Mol. Biol.191(4),639–658 (1986).
    • 94  Xing L, Li TC, Mayazaki N et al. Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J. Biol. Chem.285(43),33175–33183 (2010).
    • 95  Jones TA, Liljas L. Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 A resolution. J. Mol. Biol.177(4),735–767 (1984).
    • 96  Bakker SE, Ford RJ, Barker AM et al. Isolation of an asymmetric RNA uncoating intermediate for a single-stranded RNA plant virus. J. Mol. Biol.417(1–2),65–78 (2012).
    • 97  Zhang R, Hryc CF, Cong Y et al. 4.4 A cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J.30(18),3854–3863 (2011).