We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The role of nanotechnology in overcoming barriers to phage therapy: an overview

    Mehrdad Mohammadi

    *Author for correspondence:

    E-mail Address: mehrdad.mohammadi1984@gmail.com

    E-mail Address:

    Microbiology & Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran

    ,
    Mehrisadat Mirabadi

    Department of Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

    ,
    Masoumeh Beig

    Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran

    ,
    Somaieh Nasereslami

    Department of Virology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran

    ,
    Mina Yazdanmehr

    Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

    &
    Fatemeh Nafe Monfared

    Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

    Published Online:https://doi.org/10.2217/fvl-2022-0229

    Phage treatment has again risen in popularity due to the rise of antibiotic resistance and the need for more reliable alternatives. Human approval of phage therapy has been delayed despite several promising investigations, so, in order to break into the clinical market, existing barriers must be eliminated, and new solutions must be developed. As such, nanotechnology has the potential to help phage formulations overcome their pharmacological drawbacks. The use of nanotechnology to improve phage therapy has received surprisingly little attention in the literature. The key method for increasing phage stability and retention inside the body is encapsulation. New developments in phage therapy using nanotechnology are summarized in this paper.

    Tweetable abstract

    Compassionate modern phage therapy holds the promise to cure persistent & incurable illnesses, with improved nano-based delivery technologies increasing success rates.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. McCallin S, Sacher JC, Zheng J, Chan BK. Current state of compassionate phage therapy. Viruses. 11(4), 343 (2019).
    • 2. Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol. 29(4), e2041 (2019). • Excellent description of phage therapy, future research and clinical applications.
    • 3. Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B. Phage therapy: current status and perspectives. Med. Res. Rev. 40(1), 459–463 (2020).
    • 4. Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 32(2), e00066–00018 (2019).
    • 5. Górski A, Międzybrodzki R, Borysowski J. Phage Therapy: A Practical Approach. Springer (2019).
    • 6. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 1(2), 111–114 (2011).
    • 7. Clokie MRJ, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 1(1), 31–45 (2011).
    • 8. Düzgüneş N, Sessevmez M, Yildirim M. Bacteriophage therapy of bacterial infections: the rediscovered frontier. Pharmaceuticals. 14(1), 34 (2021).
    • 9. Wu N, Zhu T. Potential of therapeutic bacteriophages in nosocomial infection management. Front. Microbiol. 12, 1–10 (2021).
    • 10. Górski A, Borysowski J, Międzybrodzki R. Phage therapy: towards a successful clinical trial. Antibiotics. 9(11), 1–7 (2020). •• Describes how the uses of phages in clinical trials is a challenge.
    • 11. Nilsson AS. Pharmacological limitations of phage therapy. Ups. J. Med. Sci. 124(4), 218–227 (2019).
    • 12. Dąbrowska K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39(5), 2000–2025 (2019). •• Excellent details of phage pharmacokinetics and bioavailability.
    • 13. Baggot JD. Pharmacokinetic-pharmacodynamic relationship. Annales de recherches veterinaires. Ann. Vet. Res. 21(Suppl. 1), 29S–40S (1990).
    • 14. Abedon ST, Thomas-Abedon C. Phage therapy pharmacology. Curr. Pharm. Biotechnol. 11(1), 28–47 (2010).
    • 15. Hyman P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals. 12(1), 35 (2019).
    • 16. Luong T, Salabarria A-C, Roach DR. Phage therapy in the resistance era: where do we stand and where are we going? Clin. Ther. 42(9), 1659–1680 (2020).
    • 17. Kutter E, De Vos D, Gvasalia G et al. Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol. 11(1), 69–86 (2010).
    • 18. Harper DR. Criteria for selecting suitable infectious diseases for phage therapy. Viruses. 10(4), 177 (2018).
    • 19. Wu N, Zhu T. Potential of therapeutic bacteriophages in nosocomial infection management. Front. Microbiol. 12, DOI: 10.3389/fmicb.2021.638094 (2021).
    • 20. Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev. Nutr. Food Sci. 24(3), 225–234 (2019).
    • 21. Malik DJ, Sokolov IJ, Vinner GK et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid. Interface Sci. 249, 100–133 (2017).
    • 22. Dąbrowska K, Abedon ST. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev. 83(4), e00012–00019 (2019). • Excellent details of pharmacodynamic and pharmacokinetic obstacles in phage therapy.
    • 23. Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev. 145, 4–17 (2019).
    • 24. Li M, Wang H, Chen L et al. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice. Virologica Sinica. 37(4), 538–546 (2022).
    • 25. Aleshkin AV, Ershova ON, Volozhantsev NV et al. Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage. 6(4), e1251379 (2016).
    • 26. Kuptsov NS, Kornienko MA, Gorodnichev RB et al. Efficacy of commercial bacteriophage products against eskape pathogens. Bull. Russ. State Med. Univ. (3), 18–24 (2020).
    • 27. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins – application approaches. Curr. Med. Chem. 22(14), 1757–1773 (2015).
    • 28. Bull JJ, Vegge CS, Schmerer M, Chaudhry WN, Levin BR. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLOS ONE. 9(4), e94690 (2014).
    • 29. Loh B, Gondil VS, Manohar P et al. Encapsulation and delivery of therapeutic phages. Appl. Environ. Microbiol. 87(5), e01979–20 (2021).
    • 30. Otero J, García-Rodríguez A, Cano-Sarabia M et al. Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy. Front. Microbiol. 10, 689 (2019).
    • 31. Puri A, Loomis K, Smith B et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26(6), 523–580 (2009).
    • 32. Balcão VM, Glasser CA, Chaud MV, del Fiol FS, Tubino M, Vila MM. Biomimetic aqueous-core lipid nanoballoons integrating a multiple emulsion formulation: a suitable housing system for viable lytic bacteriophages. Colloids and surfaces. B. Biointerfaces. 123, 478–485 (2014).
    • 33. Singla S, Harjai K, Katare OP, Chhibber S. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of klebsiella pneumoniae-induced lobar pneumonia. J. Infect. Dis. 212(2), 325–334 (2015).
    • 34. Chadha P, Katare OP, Chhibber S. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43(7), 1532–1543 (2017). • Describes liposome loaded phage cocktails.
    • 35. Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J. Drug. Deliv. 2011, DOI: 10.1155/2011/591325 (2011).
    • 36. Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. The AAPS journal. 14(2), 303–315 (2012).
    • 37. Pierre MB, Dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 303(9), 607–621 (2011).
    • 38. Salalha W, Kuhn J, Dror Y, Zussman E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology. 17(18), 4675–4681 (2006).
    • 39. Wang W, Xie R, Ju XJ et al. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a chip. 11(9), 1587–1592 (2011).
    • 40. Wang X, Piao Y, Su Y, Wang W. Driving and sorting of the fluorescent droplets on digital microfluidic platform. Microfluidics and Nanofluidics. 22(11), 129 (2018).
    • 41. Leung SSY, Morales S, Britton W, Kutter E, Chan H-K. Microfluidic-assisted bacteriophage encapsulation into liposomes. In. J. Pharm. 545(1), 176–182 (2018).
    • 42. Cinquerrui S, Mancuso F, Vladisavljević GT, Bakker SE, Malik DJ. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front Microbiol. 9, 2172 (2018).
    • 43. Bassetti M, Vena A, Russo A, Peghin M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs 80(13), 1309–1318 (2020).
    • 44. Bitounis D, Fanciullino R, Iliadis A, Ciccolini J. Optimizing druggability through liposomal formulations: new approaches to an old concept. ISRN pharmaceutics. 2012, DOI: 10.5402/2012/738432 (2012).
    • 45. Agrawal AK, Gupta CM. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv. Drug. Deliv. Rev. 41(2), 135–146 (2000).
    • 46. Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials (Basel, Switzerland). 6(7), 125 (2016).
    • 47. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug. Deliv. 2013, DOI: 10.1155/2013/374252 (2013).
    • 48. Chhibber S, Kaur J, Kaur S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse mrsa infection. Front in microbiol. 9, 561 (2018).
    • 49. Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7(10), 1147–1171 (2012).
    • 50. Love MJ, Abeysekera GS, Muscroft-Taylor AC, Billington C, Dobson RCJ. On the catalytic mechanism of bacteriophage endolysins: opportunities for engineering. Biochimica et biophysica acta. Proteins and proteomics. 1868(1), DOI: 10.1016/j.bbapap.2019.140302 (2020). • Provides good detail on the catalytic mechanism of bacteriophage endolysins.
    • 51. Silva MD, Paris JL, Gama FM, Silva BFB, Sillankorva S. Sustained release of a Streptococcus pneumoniae endolysin from liposomes for potential otitis media treatment. ACS infectious diseases. 7(8), 2127–2137 (2021).
    • 52. McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51(4), 285–330 (2011).
    • 53. Kanouni M, Rosano HL, Naouli N. Preparation of a stable double emulsion (W1/O/W2): role of the interfacial films on the stability of the system. Adv. Colloid Interface Sci. 99(3), 229–254 (2002).
    • 54. Azeem A, Rizwan M, Ahmad FJ et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 10(1), 69–76 (2009).
    • 55. Franklyne JS, Iyer S, Ebenazer A, Mukherjee A, Chandrasekaran N. Essential oil nanoemulsions: antibacterial activity in contaminated fruit juices. Int. J. Food Sci. Tech. 54(9), 2802–2810 (2019). •• Provides excellent background of essential oil nanoemulsions.
    • 56. Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107(45), 19163–19166 (2010).
    • 57. Vladisavljević GT, Al Nuumani R, Nabavi SA. Microfluidic production of multiple emulsions. Micromachines. 8(3), 75 (2017).
    • 58. Esteban PP, Alves DR, Enright MC et al. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions. Biotechnol. Prog. 30(4), 932–944 (2014).
    • 59. Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int. J. Pharm. 280(1), 241–251 (2004).
    • 60. Colom J, Cano-Sarabia M, Otero J, Cortés P, Maspoch D, Llagostera M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl. Environ. Microbiol. 81(14), 4841–4849 (2015).
    • 61. González-Menéndez E, Fernández L, Gutiérrez D et al. Strategies to encapsulate the Staphylococcus aureus bacteriophage phiIPLA-RODI. Viruses. 10(9), 495 (2018).
    • 62. Bai J, Yang E, Chang PS, Ryu S. Preparation and characterization of endolysin-containing liposomes and evaluation of their antimicrobial activities against gram-negative bacteria. Enzyme Microb. Technol. 128, 40–48 (2019).
    • 63. Portilla S, Fernández L, Gutiérrez D, Rodríguez A, García P. Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-sensitive liposomes. Antibiotics (Basel, Switzerland). 9(5), 242 (2020).
    • 64. Nieth A, Verseux C, Barnert S, Süss R, Römer W. A first step toward liposome-mediated intracellular bacteriophage therapy. Expert opinion on drug delivery. 12(9), 1411–1424 (2015).
    • 65. Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics. 11(1), 5 (2018).
    • 66. Alghoraibi I, Alomari S. Different Methods for Nanofiber Design and Fabrication. In: Handbook of Nanofibers. Barhoum ABechelany MMakhlouf A (Eds). 1–46 Springer International Publishing, Cham, Switzerland (2018).
    • 67. Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Appl. Mater. Interfaces. 12(41), 45673–45701 (2020).
    • 68. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 119(8), 5298–5415 (2019). •• Details of electrospinning and electrospun nanofibers.
    • 69. Gugulothu D, Nerella R, Ajmer R. Fabrication of Nanofibers: Electrospinning and Non-electrospinning Techniques. In: Handbook of Nanofibers. Barhoum A Bechelany MMakhlouf ASH (Eds). 45–77 Springer International Publishing, Cham, Switzerland (2019).
    • 70. Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning Nanofibers for Therapeutics Delivery. Nanomaterials (Basel, Switzerland). 9(4), 532 (2019).
    • 71. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018).
    • 72. Lu Y, Huang J, Yu G et al. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 8(5), 654–677 (2016).
    • 73. Yew CHT, Azari P, Choi JR, Muhamad F, Pingguan-Murphy B. Electrospun polycaprolactone nanofibers as a reaction membrane for lateral flow assay. Polymers. 10(12), 1387 (2018).
    • 74. Koo CK, Senecal K, Senecal A, Nugen SR. Dehydration of bacteriophages in electrospun nanofibers: effect of excipients in polymeric solutions. Nanotechnology. 27(48), DOI: 10.1088/0957-4484/27/48/485102 (2016).
    • 75. Lee S-W, Belcher AM. Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Letters. 4(3), 387–390 (2004).
    • 76. Dai M, Senecal A, Nugen SR. Electrospun water-soluble polymer nanofibers for the dehydration and storage of sensitive reagents. Nanotechnology. 25(22), DOI: 10.1088/0957-4484/25/22/225101 (2014).
    • 77. Korehei R, Kadla J. Incorporation of T4 bacteriophage in electrospun fibres. J. Appl. Microbiol. 114(5), 1425–1434 (2013).
    • 78. Nogueira F, Karumidze N, Kusradze I, Goderdzishvili M, Teixeira P, Gouveia IC. Immobilization of bacteriophage in wound-dressing nanostructure. Nanomed: Nanotechnol Bio Med. 13(8), 2475–2484 (2017).
    • 79. Sarhan WA, Azzazy HM. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine (London, England). 12(17), 2055–2067 (2017).