We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Short Communication

Cs-GRP78 recognition site on dengue virus envelope protein: in silico perspective

    Abdo A Elfiky

    *Author for correspondence: Tel.: +20 100 326 0523;

    E-mail Address: dr_abdo@cu.edu.eg

    Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt

    ,
    Ahmed Amr

    Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt

    ,
    Amira Mosaad

    Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt

    ,
    Ahmed K Mubarak

    Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt

    ,
    Mohamed A Sayed

    Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt

    &
    Kholoud K El-Halwany

    Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt

    Published Online:https://doi.org/10.2217/fvl-2022-0192

    Aim: To understand the binding of the dengue virus (DENV) envelope and the host cell factor, GRP78. Materials & methods: In this study, we simulate the binding of the DENV envelope against GRP78 using structural bioinformatics tools. Results: The sequence similarity of the DENV envelope C3–C30 and C302–C333 regions against the Pep42 cyclic peptide suggest these regions are possible recognition sites for GRP78. C3–C30 has a more similar grand average hydrophobicity index to that of Pep42 and a more negative binding affinity toward GRP78. Conclusion: We predict this region (C3–C30) of the DENV envelope to be the recognition site of GRP78. Further experimental validation will be important to future studies.

    Plain language summary

    Dengue virus is a tropical virus that causes fever and is spread by mosquitoes. In severe cases, dengue can be fatal, so it is important to find new targets for drugs to be able to fight the virus. In our study, we identify how a protein on the surface of the virus may interact with a protein on the surface of human cells. This could be a potential target for future drug development.

    Tweetable abstract

    Our docking study reveals the potential of the DENV envelope C302–C333 region to bind to GRP78 effectively. We suggest this region of the DENV envelope to be the recognition site for the host cell-surface GRP78 and suggest it as a promising protein target for drug design.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Badawi A, Velummailum R, Ryoo SG et al. Prevalence of chronic comorbidities in dengue fever and West Nile virus: a systematic review and meta-analysis. PLOS One 13(7), e0200200 (2018).
    • 2. Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat. Microbiol. 5(6), 796–812 (2020).
    • 3. Salles TS, da Encarnação Sá-Guimarães T, de Alvarenga ESL et al. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasites & vectors 11(1), 264 (2018). •• Reviews the disease and its subtypes in past periods.
    • 4. Colón-González FJ, Sewe MO, Tompkins AM et al. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Plan. Health 5(7), e404–e414 (2021).
    • 5. Guo C, Zhou Z, Wen Z et al. Global epidemiology of Dengue outbreaks in 1990–2015: a systematic review and meta-analysis. Frontiers in Cellular and Infection Microbiology 7, 317 (2017).
    • 6. Khan NU, Danish L, Khan HU et al. Prevalence of dengue virus serotypes in the 2017 outbreak in Peshawar, KP, Pakistan. J. Clin. Lab. Anal. 34(9), e23371 (2020).
    • 7. Senaratne UTN, Murugananthan K, Sirisena P, Carr JM, Noordeen F. Dengue virus co-infections with multiple serotypes do not result in a different clinical outcome compared to mono-infections. Epidemiol. Infect. 148, e119 (2020). • Discusses the serotypes and clinical outcomes of coinfections.
    • 8. Shrivastava S, Tiraki D, Diwan A et al. Co-circulation of all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus in Pune, India during 2016 season. PLOS One 13(2), e0192672 (2018).
    • 9. Sharmila PF, Vanathy K, Rajamani B, Kaliaperumal V, Dhodapkar R. Emergence of dengue virus 4 as the predominant serotype during the outbreak of 2017 in South India. Indian Journal of Medical Microbiology 37(3), 393–400 (2019).
    • 10. Douglas KO, Dutta SK, Martina B, Anfasa F, Samuels TA, Hilaire MG. Dengue fever and severe Dengue in Barbados, 2008-2016. Trop. Med. Infect. Dis. 5(2), 68 (2020).
    • 11. Mwanyika GO, Mboera LEG, Rugarabamu S et al. Circulation of dengue serotype 1 viruses during the 2019 outbreak in Dar es Salaam, Tanzania. Pathog. Glob. Health 115(7–8), 467–475 (2021).
    • 12. Nicholls CMR, Sevvana M, Kuhn RJ. Structure-guided paradigm shifts in flavivirus assembly and maturation mechanisms. Adv. Virus Res. 108, 33–83 (2020).
    • 13. Norazharuddin H, Lai NS. Roles and prospects of Dengue virus non-structural proteins as antiviral targets: an easy digest. Malays J Med Sci 25(5), 6–15 (2018).
    • 14. Sotcheff S, Routh A. Understanding Flavivirus capsid protein functions: the tip of the iceberg. Pathogens (Basel, Switzerland) 9(1), 42 (2020).
    • 15. Kellermann M, Scharte F, Hensel M. Manipulation of host cell organelles by intracellular pathogens. Int. J. Mol. Sci. 22(12), 6484 (2021).
    • 16. Lescar J, Soh S, Lee LT, Vasudevan SG, Kang C, Lim SP. The Dengue virus replication complex: from RNA replication to protein–protein interactions to evasion of innate immunity. Adv. Exp. Med. Biol. 1062, 115–129 (2018). •• Discusses the RNA replication of DENV and immune response.
    • 17. Plaszczyca A, Scaturro P, Neufeldt CJ et al. A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLOS Pathog 15(5), e1007736 (2019).
    • 18. Zeidler JD, Fernandes-Siqueira LO, Barbosa GM, Da Poian AT. Non-canonical roles of Dengue Virus non-structural proteins. Viruses 9(3), 42 (2017).
    • 19. Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. Journal of Biomedical Science 25(1), 58 (2018).
    • 20. Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The good, the bad, and the shocking: The multiple roles of Dengue virus nonstructural protein 1 in protection and pathogenesis. Annu. Rev. Virol. 5(1), 227–253 (2018).
    • 21. Slon Campos JL, Mongkolsapaya J, Screaton GR. The immune response against flaviviruses. Nature immunology 19(11), 1189–1198 (2018).
    • 22. Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg. Microbes Infect. 7(1), 167 (2018).
    • 23. Akiyama BM, Graham ME, O Donoghue Z, Beckham JD, Kieft JS. Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Res. 49(12), 7122–7138 (2021).
    • 24. da Silva-Junior EF, de Araujo-Junior JX. Peptide derivatives as inhibitors of NS2B-NS3 protease from Dengue, West Nile, and Zika flaviviruses. Bioorg. Med. Chem. 27(18), 3963–3978 (2019).
    • 25. Tay MYF, Vasudevan SG. The transactions of NS3 and NS5 in flaviviral RNA replication. Adv. Exp. Med. Biol. 1062, 147–163 (2018).
    • 26. Wahaab A, Mustafa BE, Hameed M et al. Potential role of flavivirus NS2B-NS3 proteases in viral pathogenesis and anti-flavivirus drug discovery employing animal cells and models: a review. Viruses 14(1), 44 (2022).
    • 27. Tay MYF, Vasudevan SG (Ed.) . The transactions of NS3 and NS5 in flaviviral RNA replication. In: Dengue and Zika: Control and Antiviral Treatment Strategies. Hilgenfeld R (Ed.). Springer, Singapore, 147–163 (2018).
    • 28. Wang S, Chan KWK, Naripogu KB, Swarbrick CMD, Aaskov J, Vasudevan SG. Subgenomic RNA from Dengue virus Type 2 suppresses replication of Dengue virus genomes and interacts with virus-encoded NS3 and NS5 proteins. ACS Infect. Dis. 6(3), 436–446 (2020).
    • 29. Anasir MI, Ramanathan B, Poh CL. Structure-based design of antivirals against envelope glycoprotein of Dengue virus. Viruses 12(4), 367 (2020).
    • 30. Ngono AE, Shresta S. Immune response to Dengue and Zika. Annu. Rev. Immunol. 36, 279–308 (2018).
    • 31. Newton ND, Hardy JM, Modhiran N et al. The structure of an infectious immature flavivirus redefines viral architecture and maturation. Sci Adv 7(20), eabe4507 (2021).
    • 32. Nicholls CMR, Sevvana M, Kuhn RJ. Chapter Two - Structure-guided paradigm shifts in flavivirus assembly and maturation mechanisms. In: Advances in virus research. Kielian MMettenleiter TCRoossinck MJ (Eds). Academic Press, 33–83 (2020).
    • 33. Bhardwaj T, Saumya KU, Kumar P et al. Japanese encephalitis virus – exploring the dark proteome and disorder-function paradigm. FEBS J. 287(17), 3751–3776 (2020).
    • 34. van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 12(1), 2814–2838 (2021).
    • 35. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: a cell's response to stress. Life Sci. 226, 156–163 (2019). •• Reviews GRP78 in normal and under stress conditions, like in cancer and viral infection.
    • 36. Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 73(6), 843–854 (2021).
    • 37. Gurusinghe K, Mishra A, Mishra S. Glucose-regulated protein 78 substrate-binding domain alters its conformation upon EGCG inhibitor binding to nucleotide-binding domain: molecular dynamics studies. Sci. Rep. 8(1), 5487 (2018).
    • 38. Elfiky AA, Baghdady AM, Ali SA, Ahmed MI. GRP78 targeting: hitting two birds with a stone. Life Sci. 260, DOI: 10.1016/j.lfs.2020.118317 (2020).
    • 39. da Silva DC, Valentao P, Andrade PB, Pereira DM. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: tools and strategies to understand its complexity. Pharmacol. Res. 155, DOI: 10.1016/j.phrs.2020.104702 (2020).
    • 40. Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: an emerging imaging marker and therapeutic target for cancer. J. Control Release 328, 932–941 (2020).
    • 41. Hernandez I, Cohen M. Linking cell-surface GRP78 to cancer: from basic research to clinical value of GRP78 antibodies. Cancer Lett. 524, 1–14 (2022).
    • 42. Mustapha S, Mohammed M, Azemi AK et al. Potential roles of endoplasmic reticulum stress and cellular proteins implicated in diabesity. Oxid. Med. Cell. Longev. 2021, DOI: 10.1155/2021/8830880 (2021).
    • 43. Zhang LH, Zhang X. Roles of GRP78 in physiology and cancer. J. Cell. Biochem. 110(6), 1299–1305 (2010).
    • 44. Elfiky AA, Ibrahim IM. Zika virus envelope - heat shock protein A5 (GRP78) binding site prediction. J. Biomol. Struct. Dyn. 39(14), 5248–5260 (2021).
    • 45. Nassar A, Ibrahim IM, Amin FG et al. A review of human coronaviruses' receptors: the host-cell targets for the crown bearing viruses. Molecules 26(21), 6455 (2021).
    • 46. Ibrahim IM, Elfiky AA, Elgohary AM. Recognition through GRP78 is enhanced in the UK, South African, and Brazilian variants of SARS-CoV-2; An in silico perspective. Biochem. Biophys. Res. Commun. 562, 89–93 (2021).
    • 47. Elgohary AM, Elfiky AA, Barakat K. GRP78: a possible relationship of COVID-19 and the mucormycosis; in silico perspective. Comput. Biol. Med. 139, DOI: 10.1016/j.compbiomed.2021.104956 (2021).
    • 48. Elshemey WM, Elfiky AA, Ibrahim IM, Elgohary AM. Interference of Chaga mushroom terpenoids with the attachment of SARS-CoV-2; in silico perspective. Comput. Biol. Med. 145, DOI: 10.1016/j.compbiomed.2022.105478 (2022).
    • 49. Elfiky AA, Ibrahim IM, Elgohary AM. SARS-CoV-2 Delta variant is recognized through GRP78 host-cell surface receptor, in silico perspective. Int. J. Peptide Res. Ther. 28(5), 146 (2022).
    • 50. Sussman JL, Lin D, Jiang J et al. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. D. Biol. Crystallogr. 54(Pt 6 Pt 1), 1078–1084 (1998).
    • 51. Rauf MA, Zubair S, Azhar A. Ligand docking and binding site analysis with pymol and autodock/vina. International Journal of Basic and Applied Sciences 4(2), 168 (2015).
    • 52. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42(Web Server issue), W320–324 (2014).
    • 53. Sievers F, Wilm A, Dineen D et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7(1), 539 (2011).
    • 54. Gasteiger E, Hoogland C, Gattiker A et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook. Walker JM (Ed.). Humana Press, Totowa, NJ, 571–607 (2005).
    • 55. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982).
    • 56. van Zundert GCP, Rodrigues J, Trellet M et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428(4), 720–725 (2016).
    • 57. de Vries SJ, van Dijk M, Bonvin AMJJ. The HADDOCK web server for data-driven biomolecular docking. Nature Protocols 5(5), 883–897 (2010).
    • 58. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32(23), 3676–3678 (2016).
    • 59. Adasme MF, Linnemann KL, Bolz SN et al. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 49(W1), W530–W534 (2021).
    • 60. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 43(W1), W443–W447 (2015).
    • 61. Yoneda Y, Steiniger SC, Capkova K et al. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg. Med. Chem. Lett. 18(5), 1632–1636 (2008).
    • 62. Liu Y, Steiniger SC, Kim Y, Kaufmann GF, Felding-Habermann B, Janda KD. Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol. Pharm. 4(3), 435–447 (2007).