We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research ArticleFree Access

Digging for the discovery of SARS-CoV-2 nsp12 inhibitors: a pharmacophore-based and molecular dynamics simulation study

    Fatemeh Sana Askari

    Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran

    ,
    Mohsen Ebrahimi

    Neonatal & Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran

    ,
    Jabbar Parhiz

    Neonatal & Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran

    ,
    Mina Hassanpour

    Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran

    ,
    Alireza Mohebbi

    *Author for correspondence: Tel.: +98 935 467 4593;

    E-mail Address: Mohebbi-a@goums.ac.ir

    Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran

    &
    Abbas Mirshafiey

    **Author for correspondence: Tel.: +989124018531;

    E-mail Address: Mirshafiey@tums.ac.ir

    Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran

    Published Online:https://doi.org/10.2217/fvl-2022-0054

    Aim: COVID-19 is a global health threat. Therapeutics are urgently needed to cure patients severely infected with COVID-19. Objective: to investigate potential candidates of nsp12 inhibitors by searching for druggable cavity pockets within the viral protein and drug discovery. Methods: A virtual screening of ZINC natural products on SARS-CoV-2 nsp12's druggable cavity was performed. A lead compound with the highest affinity to nsp12 was simulated dynamically for 10 ns. Results: ZINC03977803 was nominated as the lead compound. The results showed stable interaction between ZINC03977803 and nsp12 during 10 ns. Discussion: ZINC03977803 showed stable interaction with the catalytic subunit of SARS-CoV-2, nsp12. It could inhibit the SARS-CoV-2 life cycle by direct interaction with nsp12 and inhibit RdRp complex formation.

    References

    • 1. Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9(5), 1267 (2020).
    • 2. David A Ben, Diamant E, Dor E et al. Identification of SARS-CoV-2 receptor binding inhibitors by in vitro screening of drug libraries. Molecules 26(11), 3213 (2021).
    • 3. Bojadzic D, Alcazar O, Buchwald P. Methylene Blue inhibits the SARS-CoV-2 Spike–ACE2 protein–protein interaction – a mechanism that can contribute to its antiviral activity against COVID-19. Front. Pharmacol. 11, 2255 (2021).
    • 4. Mohebbi A, Askari FS, Ebrahimi M et al. Susceptibility of the Iranian population to severe acute respiratory syndrome coronavirus 2 infection based on variants of angiotensin I converting enzyme 2. Future Virol. 15(8), 507–514 (2020).
    • 5. Amin SA, Banerjee S, Ghosh K, Gayen S, Jha T. Protease targeted COVID-19 drug discovery and its challenges: insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic Med. Chem. 29, 115860 (2021).
    • 6. Rajpoot S, Alagumuthu M, Baig MS. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: a novel structure-based design approach to treat COVID-19. Curr. Res. Struct. Biol. 3, 9–18 (2021).
    • 7. Ibrahim TM, Ismail MI, Bauer MR, Bekhit AA, Boeckler FM. Supporting SARS-CoV-2 papain-like protease drug discovery: in silico methods and benchmarking. Front. Chem. 8, 996 (2020).
    • 8. Khan A, Khan M, Saleem S et al. Decoding the structure of RNA-dependent RNA-polymerase (RdRp), understanding the ancestral relationship and dispersion pattern of 2019 Wuhan Coronavirus. 25(April), (2020).
    • 9. Arya R, Kumari S, Pandey B et al. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 433(2), 166725 (2021).
    • 10. Kokic G, Hillen HS, Tegunov D et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 12(1), 1–7 (2021).
    • 11. Zhao J, Guo SS, Yi D et al. A cell-based assay to discover inhibitors of SARS-CoV-2 RNA dependent RNA polymerase. Antiviral Res. 190, 105078 (2021).
    • 12. Shah A, Rehmat S, Aslam I et al. Comparative mutational analysis of SARS-CoV-2 isolates from Pakistan and structural-functional implications using computational modelling and simulation approaches. Comput. Biol. Med. 141, 105170 (2022).
    • 13. Mari A, Roloff T, Stange M et al. Global genomic analysis of SARS-CoV-2 RNA dependent RNA polymerase evolution and antiviral drug resistance. Microorganisms 9(5), 1094 (2021).
    • 14. Wang X, Sacramento CQ, Jockusch S et al. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Commun. Biol. 5(1), 1–14 (2022).
    • 15. Khan A, Khan M, Saleem S et al. Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products. Interdiscip. Sci. Comput. Life Sci. 12(3), 335–348 (2020).
    • 16. Zhao Y, Tian Y, Pan C, Liang A, Zhang W, Sheng Y. Target-based in silico screening for phytoactive compounds targeting SARS-CoV-2. Interdiscip. Sci. Comput. Life Sci. 14(1), 64–79 (2022).
    • 17. Zhang H, Yang Y, Li J et al. A novel virtual screening procedure identifies pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLOS Comput. Biol. 16(12 December), e1008489 (2020).
    • 18. Dejmek M, Konkol'ová E, Eyer L et al. Non-nucleotide RNA-dependent RNA polymerase inhibitor that blocks SARS-CoV-2 replication. Viruses 13(8), 1585 (2021).
    • 19. García-Trejo JJ, Ortega R, Zarco-Zavala M. Putative repurposing of lamivudine, a nucleoside/nucleotide analogue and antiretroviral to improve the outcome of cancer and COVID-19 patients. Front. Oncol. 11, 2618 (2021).
    • 20. Yuan S, Yin X, Meng X et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature 593(7859), 418–423 (2021).
    • 21. Khan SA, Al-Balushi K. Combating COVID-19: the role of drug repurposing and medicinal plants. J. Infect. Public Health 14(4), 495–503 (2021).
    • 22. Alam S, Sarker MMR, Afrin S et al. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: update on clinical trials and mechanism of actions. Front. Pharmacol. 12, 1248 (2021).
    • 23. Caputo L, Lentini G, Habtemariam S. Repurposing therapeutic agents and herbal medicines to defeat viral nemesis. Drug Dev. Res. 81(6), 641–642 (2020).
    • 24. Tian D, Liu Y, Liang C et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed. Pharmacother. 137, 111313 (2021).
    • 25. De Savi C, Hughes DL, Kvaerno L. Quest for a COVID-19 cure by repurposing small-molecule drugs: mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org. Process Res. Dev. 24(6), 940–976 (2020).
    • 26. Mohebbi A, Askari FS, Sammak AS, Ebrahimi M, Najafimemar Z. Druggability of cavity pockets within SARS-CoV-2 spike glycoprotein and pharmacophore-based drug discovery. Future Virol. 16(6), 389–397 (2021).
    • 27. Berman HM, Battistuz T, Bhat TN et al. The Protein Data Bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 58(6 I), 899–907 (2002).
    • 28. Gao Y, Yan L, Huang Y et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492), 779–782 (2020).
    • 29. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997).
    • 30. Mohebbi A, Mohammadi S, Memarian A. Prediction of HBF-0259 interactions with hepatitis B Virus receptors and surface antigen secretory factors. VirusDisease 27(3), 234–241 (2016).
    • 31. Xu Y, Wang S, Hu Q et al. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 46(W1), W374–W379 (2018).
    • 32. Koes DR, Camacho CJ. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 40(W1), W409–W414 (2012).
    • 33. Irwin JJ, Shoichet BK. ZINC - A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45(1), 177–182 (2005).
    • 34. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J. Cheminform. 3(10), 1–14 (2011).
    • 35. Dunbrack RL. Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12(4), 431–440 (2002).
    • 36. Allouche A. Software news and updates Gabedit – a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2012).
    • 37. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55(14), 6582–6594 (2012).
    • 38. Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature 584(7819), 154–156 (2020).
    • 39. Wang Q, Wu J, Wang H et al. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell 182(2), 417–428.e13 (2020).
    • 40. Shannon A, Fattorini V, Sama B et al. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat. Commun. 13(1), 1–9 (2022).
    • 41. Abraham MJ, Murtola T, Schulz R et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
    • 42. Huang J, Rauscher S, Nawrocki G et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14(1), 71–73 (2016).
    • 43. Vanommeslaeghe K, Hatcher E, Acharya C et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690 (2010).
    • 44. Yu W, He X, Vanommeslaeghe K, MacKerell AD. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem. 33(31), 2451–2468 (2012).
    • 45. Vanommeslaeghe K, MacKerell AD. Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52(12), 3144–3154 (2012).
    • 46. Vanommeslaeghe K, Raman EP, MacKerell AD. Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52(12), 3155–3168 (2012).
    • 47. Eisenberg D, Mclachlan AD. Solvation energy in protein folding and binding. Nature 319(6050), 199–203 (1986).
    • 48. Bondi A. Van der Waals volumes and radii. J. Phys. Chem. 68(3), 441–451 (1964).
    • 49. Mohebbi A, Azadi F, Hashemi MM, Askari FS, Razzaghi N. Havachoobe (Onosma dichroanthum Boiss) root extract decreases the hepatitis B virus surface antigen secretion in the PLC/PRF/5 cell line. Intervirology 64(1), 22–26 (2021).
    • 50. Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 17, 420–451 (2018).
    • 51. Romeo I, Mesiti F, Lupia A, Alcaro S. Current updates on naturally occurring compounds recognizing SARS-CoV-2 druggable targets. Molecules 26(3), 632 (2021).
    • 52. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J. Biomol. Struct. Dyn. 39(16), 6249–6264 (2021).
    • 53. Islam SS, Midya S, Sinha S, Saadi SMAI. Natural medicinal plant products as an immune-boosters: a possible role to lessen the impact of COVID-19. Case Stud. Chem. Environ. Eng. 4, 100105 (2021).
    • 54. Chakravarti R, Singh R, Ghosh A et al. A review on potential of natural products in the management of COVID-19. RSC Adv. 11(27), 16711–16735 (2021).
    • 55. Koulgi S, Jani V, Mallikarjunachari Uppuladinne VN, Sonavane U, Joshi R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus-2. PLOS ONE 16(5 May), e0251801 (2021).
    • 56. Islam MR, Hoque MN, Rahman MS et al. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci. Rep. 10(1), 1–9 (2020).