We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Antisense protein: a novel HIV-1 gene requiring attention

    Xiaorui Zuo

    Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China

    &
    Guangyong Ma

    *Author for correspondence:

    E-mail Address: gma@cpu.edu.cn

    Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China

    Published Online:https://doi.org/10.2217/fvl-2022-0008
    Free first page

    References

    • 1. Ruelas DS, Greene WC. An integrated overview of HIV-1 latency. Cell 155(3), 519–529 (2013).
    • 2. Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: a new insight into a functional HIV cure. EBioMedicine 45, 624–629 (2019).
    • 3. Michael NL, Vahey MT, D'arcy L et al. Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. J. Virol. 68(2), 979–987 (1994).
    • 4. Landry S, Halin M, Lefort S et al. Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology 4, 71 (2007).
    • 5. Barbeau B, Mesnard JM. Does chronic infection in retroviruses have a sense? Trends Microbiol. 23(6), 367–375 (2015).
    • 6. Miller RH. Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science 239(4846), 1420–1422 (1988).
    • 7. Briquet S, Vaquero C. Immunolocalization studies of an antisense protein in HIV-1-infected cells and viral particles. Virology 292(2), 177–184 (2002).
    • 8. Vanhee-Brossollet C, Thoreau H, Serpente N, D'Auriol L, Levy JP, Vaquero C. A natural antisense RNA derived from the HIV-1 env gene encodes a protein which is recognized by circulating antibodies of HIV+ individuals. Virology 206(1), 196–202 (1995).
    • 9. Affram Y, Zapata JC, Gholizadeh Z et al. The HIV-1 antisense protein ASP is a transmembrane protein of the cell surface and an integral protein of the viral envelope. J. Virol. 93(21), e00574–19 (2019).
    • 10. Savoret J, Chazal N, Moles JP et al. A pilot study of the humoral response against the antisense protein (ASP) in HIV-1-infected patients. Front. Microbiol. 11, 20 (2020).
    • 11. Bet A, Maze EA, Bansal A et al. The HIV-1 antisense protein (ASP) induces CD8 T cell responses during chronic infection. Retrovirology 12, 15 (2015).
    • 12. Berger CT, Llano A, Carlson JM et al. Immune screening identifies novel T cell targets encoded by antisense reading frames of HIV-1. J. Virol. 89(7), 4015–4019 (2015).
    • 13. Torresilla C, Larocque E, Landry S et al. Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy. J. Virol. 87(9), 5089–5105 (2013).
    • 14. Liu Z, Torresilla C, Xiao Y et al. HIV-1 antisense protein of different clades induces autophagy and associates with the autophagy factor p62. J. Virol. 93(2), e01757–18 (2019).
    • 15. Kobayashi-Ishihara M, Yamagishi M, Hara T et al. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology 9, 38 (2012).
    • 16. Saayman S, Ackley A, Turner AW et al. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol. Ther. 22(6), 1164–1175 (2014).
    • 17. Zapata JC, Campilongo F, Barclay RA et al. The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the polycomb repressor complex 2 and promoting nucleosome assembly. Virology 506, 34–44 (2017).
    • 18. Kobayashi-Ishihara M, Terahara K, Martinez JP et al. HIV LTR-driven antisense RNA by itself has regulatory function and may curtail virus reactivation from latency. Front. Microbiol. 9, 1066 (2018).
    • 19. Ma G, Yasunaga JI, Shimura K et al. Human retroviral antisense mRNAs are retained in the nuclei of infected cells for viral persistence. Proc. Natl Acad.Sci. USA 118(17), e2014783118 (2021).
    • 20. Mancarella A, Procopio FA, Achsel T et al. Detection of antisense protein (ASP) RNA transcripts in individuals infected with human immunodeficiency virus type 1 (HIV-1). J. Gen. Virol. 100(5), 863–876 (2019).
    • 21. Chang ST, Sova P, Peng X et al. Next-generation sequencing reveals HIV-1-mediated suppression of T cell activation and RNA processing and regulation of noncoding RNA expression in a CD4+ T cell line. mBio 2(5), e00134–11 (2011).
    • 22. Cassan E, Arigon-Chifolleau AM, Mesnard JM, Gross A, Gascuel O. Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. Proc. Natl Acad. Sci. USA 113(41), 11537–11542 (2016).
    • 23. Ma G, Yasunaga J, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 13, 16 (2016).
    • 24. Tomezsko P, Swaminathan H, Rouskin S. Viral RNA structure analysis using DMS-MaPseq. Methods 183, 68–75 (2020).