We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Synthetic antiviral peptides: a new way to develop targeted antiviral drugs

    Aura LC Parra

    Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil

    ,
    Leandro P Bezerra

    Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil

    ,
    Dur E Shawar

    Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil

    ,
    Nilton AS Neto

    Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil

    ,
    Felipe P Mesquita

    Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil

    ,
    Gabrielly O da Silva

    Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil

    &
    Pedro FN Souza

    *Author for correspondence:

    E-mail Address: pedrofilhobio@gmail.com

    Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil

    Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil

    Published Online:https://doi.org/10.2217/fvl-2021-0308

    The global concern over emerging and re-emerging viral infections has spurred the search for novel antiviral agents. Peptides with antiviral activity stand out, by overcoming limitations of the current drugs utilized, due to their biocompatibility, specificity and effectiveness. Synthetic peptides have been shown to be viable alternatives to natural peptides due to several difficulties of using of the latter in clinical trials. Various platforms have been utilized by researchers to predict the most effective peptide sequences against HIV, influenza, dengue, MERS and SARS. Synthetic peptides are already employed in the treatment of HIV infection. The novelty of this study is to discuss, for the first time, the potential of synthetic peptides as antiviral molecules. We conclude that synthetic peptides can act as new weapons against viral threats to humans.

    References

    • 1. Luo G, Gao SJ. Global health concerns stirred by emerging viral infections. J. Med. Virol. 92(4), 399 (2020).
    • 2. Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N. Engl. J. Med. 366(5), 454–461 (2012).
    • 3. Graham BS, Sullivan NJ. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic review-article. Nat. Immunol. 19(1), 20–28 (2018).
    • 4. ORGANIZATION WH. COVID-19 weekly epidemiological update. 55, 1–15 (2021).
    • 5. Souza PFN. Synthetic peptides as promising antiviral molecules. Future Virol. 17(1), 9–11 (2022).
    • 6. Souza PFN, Mesquita FP, Amaral JL et al. The human pandemic coronaviruses on the show: the spike glycoprotein as the main actor in the coronaviruses play. Int. J. Biol. Macromol. 179, 1–19 (2021).
    • 7. Magalhães ICL, Souza PFN, Marques LEC, Girão NM, Araújo FMC, Guedes MIF. New insights into the recombinant proteins and monoclonal antibodies employed to immunodiagnosis and control of Zika virus infection: a review. Int. J. Biol. Macromol. 200(September 2021), 139–150 (2022).
    • 8. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 29(3), 695–747 (2016).
    • 9. Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 172, 524–541 (2021).
    • 10. Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol. Sci. 35(2), 86–102 (2014).
    • 11. Agarwal G, Gabrani R. Antiviral peptides: identification and validation. Int. J. Pept. Res. Ther. 27(1), 149–168 (2021).
    • 12. Irwin KK, Renzette N, Kowalik TF, Jensen JD. Antiviral drug resistance as an adaptive process. Virus Evol. 2(1), vew014 (2016).
    • 13. Charoenkwan P, Anuwongcharoen N, Nantasenamat C, Hasan M, Shoombuatong W. In silico approaches for the prediction and analysis of antiviral peptides: a review. Curr. Pharm. Des. 27(18), 2180–2188 (2021).
    • 14. Research, Markets. Peptide therapeutics market – growth, trends, COVID-19 impact, and forecasts (2021–2026) (2021). https://www.researchandmarkets.com/reports/5265155/peptide-therapeutics-market-growth-trends
    • 15. Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorganic Med. Chem. 26(10), 2700–2707 (2018).
    • 16. Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des. 16(28), 3185–3203 (2010).
    • 17. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov. Today 15(1–2), 40–56 (2010).
    • 18. Maharani R, Muhajir MI. An overview of chemical synthesis of antiviral peptides. Sci. Eng. Heal. Stud. 21010003 (2021).
    • 19. Sala A, Ardizzoni A, Ciociola T et al. Antiviral activity of synthetic peptides derived from physiological proteins. Intervirology. 61(4), 166–173 (2019).
    • 20. Ali R, Rani R, Kumar S. New peptide based therapeutic approaches. Adv. Protein Chem. 14(3), 1–8 (2014).
    • 21. Lata S, Sharma BK, Raghava G. Analysis and prediction of antibacterial peptides. (2007).http://www.imtech.res.in/raghava/antibp/
    • 22. Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinformatics. 11(Suppl. 1), S19 (2010).
    • 23. Torrent M, Di Tommaso P, Pulido D et al. AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics. 28(1), 130–131 (2012).
    • 24. Sharma A, Gupta P, Kumar R, Bhardwaj A. dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides. Sci. Rep. 6(1), 21839 (2016).
    • 25. Gautam A, Chaudhary K, Kumar R, Raghava GPS. Computer-aided virtual screening and designing of cell-penetrating peptides. Humana Press, NY, USA, 59–69 (2015).
    • 26. Pirtskhalava M, Gabrielian A, Cruz P et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 44(D1), D1104–D1112 (2016).
    • 27. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMP R3: a database on sequences, structures and signatures of antimicrobial peptides: table 1. Nucleic Acids Res. 44(D1), D1094–D1097 (2016).
    • 28. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44(D1), D1087–D1093 (2016).
    • 29. Niarchou A, Alexandridou A, Athanasiadis E, Spyrou G. C-PAmP: large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PLoS ONE 8(11), e79728 (2013).
    • 30. Xiao X, Wang P, Lin WZ, Jia JH, Chou KC. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 436(2), 168–177 (2013).
    • 31. Joseph S, Karnik S, Nilawe P, Jayaraman VK, Idicula-Thomas S. ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9(5), 1535–1538 (2012).
    • 32. Porto WF, Pires ÁS, Franco OL. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides. PLoS ONE 7(12), e51444 (2012).
    • 33. Meher PK, Sahu TK, Rao AR. Prediction of donor splice sites using random forest with a new sequence encoding approach. BioData Min. 9(1), 4 (2016).
    • 34. Gasteiger E, Hoogland C, Gattiker A et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook. Humana Press, NJ, USA, 571–607 (2005).
    • 35. Sharma A, Singla D, Rashid M, Raghava GP. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics 15(1), 282 (2014).
    • 36. Boswell PG, Schellenberg JR, Carr PW, Cohen JD, Hegeman AD. A study on retention “projection” as a supplementary means for compound identification by liquid chromatography–mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. J. Chromatogr. A 1218(38), 6732–6741 (2011).
    • 37. Mól A, Castro M, Fontes W. A web application to create high quality peptide helical wheel and net projections. 1–7 (2016). http://lbqp.unb.br/NetWheels/
    • 38. Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases (2007). http://www.interscience.wiley.com
    • 39. Molero-Abraham M, Glutting JP, Flower DR, Lafuente EM, Reche PA. EPIPOX: immunoinformatic characterization of the shared T-cell epitome between variola virus and related pathogenic orthopoxviruses. J. Immunol. Res. 2015, 1–11 (2015).
    • 40. Chaudhary K, Kumar R, Singh S et al. A web server and mobile app for computing hemolytic potency of peptides. Sci. Rep. 6(1), 22843 (2016).
    • 41. Gupta S, Kapoor P, Chaudhary K et al. In Silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9), e73957 (2013).
    • 42. Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS. In silico models for designing and discovering novel anticancer peptides. Sci. Rep. 3(1), 2984 (2013).
    • 43. Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 40(W1), W199–W204 (2012).
    • 44. Kumar M, Gromiha MM, Raghava GPS. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. J. Mol. Recognit. 24(2), 303–313 (2011).
    • 45. Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theory Comput. 10(10), 4745–4758 (2014).
    • 46. Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol. J. 2(1), 1–10 (2005).
    • 47. Schüller A, Yin Z, Chia CSB et al. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease. Antiviral Res. 92(1), 96–101 (2011).
    • 48. Zheng BJ, Guan Y, He ML et al. Synthetic peptides outside the spike protein heptad repeat regions as potent inhibitors of SARS-associated coron. Related papers therapies for coronaviruses. Part I of II-viral entry inhibitors receptor-binding domain of SARS-CoV spike protein induction. Antivir. Ther. 10(3), 393–403 (2005).
    • 49. Gan YR, Huang H, Huang YD et al. Synthesis and activity of an octapeptide inhibitor designed for SARS coronavirus main proteinase. Peptides 27(4), 622–625 (2006).
    • 50. Day CW, Baric R, Cai SX et al. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395(2), 210–222 (2009).
    • 51. Chuck CP, Ke ZH, Chen C, Wan DCC, Chow HF, Wong KB. Profiling of substrate-specificity and rational design of broad-spectrum peptidomimetic inhibitors for main proteases of coronaviruses. Hong Kong Med. J. 20(Suppl. 4), 1–12 (2014).
    • 52. Souza PFN, Amaral JL, Bezerra LP et al. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. J. Biomol. Struct. Dyn. 2, 1–14 (2021).
    • 53. Ling R, Dai Y, Huang B et al. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides 130, 170328 (2020).
    • 54. Xia S, Liu M, Wang C et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30(4), 343–355 (2020).
    • 55. Zhao H, Zhou J, Zhang K et al. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci. Rep. 6, 1–12 (2016).
    • 56. Ghanem A, Mayer D, Chase G et al. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81(14), 7801–7804 (2007).
    • 57. Li C, Ba Q, Wu A, Zhang H, Deng T, Jiang T. A peptide derived from the C-terminus of PB1 inhibits influenza virus replication by interfering with viral polymerase assembly. FEBS J. 280(4), 1139–1149 (2013).
    • 58. Wunderlich K, Mayer D, Ranadheera C et al. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS One. 4(10), 1–10 (2009).
    • 59. Hoffmann J, Schneider C, Heinbockel L, Brandenburg K, Reimer R, Gabriel G. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antiviral Res. 104(1), 23–33 (2014).
    • 60. Owen SM, Rudolph DL, Wang W et al. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses 20(11), 1157–1165 (2004).
    • 61. Mzoughi O, Teixido M, Planès R et al. Trimeric heptad repeat synthetic peptides HR1 and HR2 efficiently inhibit HIV-1 entry. Biosci. Rep. 39(9), BSR20192196 (2019).
    • 62. Fung HB, Guo Y. Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. Clin. Ther. 26(3), 352–378 (2004).
    • 63. Zhao D, Zhang L, Han K et al. Peptide inhibitors of tembusu virus infection derived from the envelope protein. Vet. Microbiol. 245, 108708 (2020).
    • 64. Yu Y, Deng YQ, Zou P et al. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun. 8(1), 1–12 (2017).
    • 65. Akkarawongsa R, Pocaro NE, Case G, Kolb AW, Brandt CR. Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection radeekorn akkarawongsa. Antimicrob. Agents Chemother. 53(3), 987–996 (2009).
    • 66. Curreli F, Victor SMB, Ahmed S et al. Laboratory stapled peptides based on human angiotensin-converting. MBio. 11(6), 1–13 (2020).
    • 67. Larue RC, Xing E, Kenney AD et al. Rationally designed ACE2-derived peptides inhibit SARS-CoV-2. Bioconjug. Chem. 32(1), 215–223 (2021).
    • 68. Souza PFN, Lopes FES, Amaral JL, Freitas CDT, Oliveira JTA. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Int. J. Biol. Macromol. 164, 66–76 (2020).
    • 69. Amaral JL, Oliveira JTA, Lopes FES et al. Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease (2021). https://www.tandfonline.com/doi/abs/10.1080/07391102.2021.1920464
    • 70. Souza PFN, Mesquita FP, Amaral JL et al. Neutralizing effect of synthetic peptides toward SARS-CoV-2. ACS Omega. 7(1), 16222–16234 (2022).
    • 71. Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Göransson U. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front. Plant Sci. 6, 855 (2015).
    • 72. Henriques ST, Craik DJ. Cyclotides as templates in drug design. Drug Discov. Today 15(1–2), 57–64 (2010).
    • 73. Ireland DC, Wang CKL, Wilson JA, Gustafson KR, Craik DJ. Cyclotides as natural anti-HIV agents. Biopolym. - Pept. Sci. Sect. 90(1), 51–60 (2008).
    • 74. Gao Y, Cui T, Lam Y. Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease. Bioorganic Med. Chem. 18(3), 1331–1336 (2010).
    • 75. Daly NL, Gustafson KR, Craik DJ. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett. 574(1–3), 69–72 (2004).
    • 76. Gustafson KR, Sowder RC, Henderson LE et al. Circulins A and B novel HIV-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifofial. J. Am. Chem. Soc. 116, 9337–9338 (1994).
    • 77. Ngai PHK, Ng TB. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem. Cell Biol. 83(2), 212–220 (2005).
    • 78. Jack HW, Tzi BN. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26(7), 1120–1126 (2005).
    • 79. Filho IC, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Filho BPD. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15(3), 202–208 (2008).
    • 80. Alché LE, Barquero AA, Sanjuan NA, Coto CE. An antiviral principle present in a purified fraction from Melia azedarach L. leaf aqueous extract restrains herpes simplex virus type 1 propagation. Phyther. Res. 16(4), 348–352 (2002).
    • 81. Alché LE, Berra A, Veloso MJ, Coto CE. Treatment with meliacine, a plant derived antiviral, prevents the development of herpetic stromal keratitis in mice. J. Med. Virol. 61(4), 474–480 (2000).
    • 82. Pen G, Yang N, Teng D, Mao R, Hao Y, Wang J. A review on the use of antimicrobial peptides to combat porcine viruses. Antibiotics 9(11), 1–18 (2020).
    • 83. Galdiero S, Falanga A, Tarallo R et al. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci. 19(3), 148–158 (2013).
    • 84. Zhang HZ, Zhang H, Kemnitzer W et al. Design and synthesis of dipeptidyl glutaminyl fluoromethyl ketones as potent severe acute respiratory syndrome coronovirus (SARS-CoV) inhibitors. J. Med. Chem. 49(3), 1198–1201 (2006).
    • 85. Albiol Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents. 23(4), 382–389 (2004).
    • 86. Monteiro JMC, Oliveira MD, Dias RS et al. The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 514, 79–87 (2018).
    • 87. Yuan L, Zhang S, Wang Y, Li Y, Wang X, Yang Q. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. J. Virol. 92(21), (2018).
    • 88. Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals. 25(3), 289–297 (1997).
    • 89. Silva DS, de Castro CC, Silva FS et al. Antiviral activity of a Bacillus sp: p34 peptide against pathogenic viruses of domestic animals. Brazilian J. Microbiol. 45(3), 1089–1094 (2014).
    • 90. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int. J. Antimicrob. Agents. 25(6), 508–513 (2005).
    • 91. Lee ACL, Harris JL, Khanna KK, Hong JH. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20(10), 2383 (2019).
    • 92. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20(1), 122–128 (2015).
    • 93. Souza PFN, Marques LSM, Oliveira JTA et al. Synthetic antimicrobial peptides: from choice of the best sequences to action mechanisms. Biochimie 175, 132–145 (2020).
    • 94. Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol. Rev. 46(2), 1–17 (2022).
    • 95. Kunamneni A, Ogaugwu C, Bradfute S, Durvasula R. Ribosome display technology: applications in disease diagnosis and control. Antibodies (Basel, Switzerland). 9(3), 28 (2020).
    • 96. Sokullu E, Gauthier MS, Coulombe B. Discovery of antivirals using phage display. Viruses. 13(6), 16521–16234 (2021).
    • 97. Hashemi ZS, Zarei M, Fath MK et al. In silico approaches for the design and optimization of interfering peptides against protein–protein interactions. Front. Mol. Biosci. 8, 282 (2021).
    • 98. Souza PFN, Lopes FES, Amaral JL, Freitas CDT, Oliveira JTA. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Int. J. Biol. Macromol. 164, 66–76 (2020).
    • 99. Amaral JL, Oliveira JTA, Lopes FES et al. Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease. J. Biomol. Struct. Dyn. 4(1), 1–13 (2021).
    • 100. Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci. 76(18), 3525–3542 (2019).
    • 101. Chew MF, Poh KS, Poh CL. Peptides as therapeutic agents for dengue virus. Int. J. Med. Sci. 14(13), 1342 (2017).
    • 102. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81(1), 136–147 (2013).
    • 103. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38(4), 406–424 (2017).
    • 104. Maginnis MS. Virus–receptor interactions: the key to cellular invasion. J. Mol. Biol. 430(17), 2590–2611 (2018).
    • 105. Salas CE, Badillo-Corona JA, Ramírez-Sotelo G, Oliver-Salvador C. Biologically active and antimicrobial peptides from plants. Biomed Res. Int. 2015, 102129 (2015).
    • 106. Han S, Zhao G, Wei Z et al. An angiotensin-converting enzyme-2-derived heptapeptide GK-7 for SARS-CoV-2 spike blockade. Peptides. 145(June), 170638 (2021).
    • 107. A phase I/II trial to evaluate a peptide vaccine plus ipilimumab in patients with melanoma. https://clinicaltrials.gov/ct2/show/NCT02385669
    • 108. Cabri W, Cantelmi P, Corbisiero D et al. Therapeutic peptides targeting PPI in clinical development: overview, mechanism of action and perspectives. Front. Mol. Biosci. 8, 565 (2021).
    • 109. Shabbir W, Tzotzos S, Bedak M et al. Glycosylation-dependent activation of epithelial sodium channel by solnatide. Biochem. Pharmacol. 98(4), 740–753 (2015).
    • 110. Pennington MW, Zell B, Bai CJ. Commercial manufacturing of current good manufacturing practice peptides spanning the gamut from neoantigen to commercial large-scale products. Med. Drug Discov. 9, 100071 (2021).
    • 111. Buckley ST, Bækdal TA, Vegge A et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10(468), 7047 (2018).
    • 112. Zhang T, Chen Z, Tian Y et al. Kilogram-scale synthesis of osteogenic growth peptide (10–14) using a fragment coupling approach. Org. Process Res. Dev. 19(9), 1257–1262 (2015).
    • 113. Isidro-Llobet A, Kenworthy MN, Mukherjee S et al. Sustainability challenges in peptide synthesis and purification: from R&D to production. J. Org. Chem. 84(8), 4615–4628 (2019).
    • 114. Heydari H, Golmohammadi R, Mirnejad R, Tebyanian H, Fasihi-Ramandi M, Moghaddam MM. Antiviral peptides against Coronaviridae family: a review. Peptides 139, 170526 (2021).
    • 115. Boas LCPV, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci. 76(18), 3525–3542 (2019).
    • 116. Bhat ZF, Kumar S, Bhat HF. Bioactive peptides of animal origin: a review. J. Food Sci. Technol. 52(9), 5377–5392 (2015).