We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Mutation patterns, cross resistance and virological failure among HIV type-1 patients in Alexandria, Egypt

    Ahmed Gaballah

    *Author for correspondence: Tel.: +20 122 114 9510;

    E-mail Address: Ahmed.gaballah@alexu.edu.eg

    Microbiology Department, Medical Research Institute, Alexandria University, Egypt

    ,
    Abeer Ghazal

    Microbiology Department, Medical Research Institute, Alexandria University, Egypt

    ,
    Dalia Metwally

    Microbiology Department, Medical Research Institute, Alexandria University, Egypt

    ,
    Rasha Emad

    Alexandria Main University Hospital, Alexandria University, Egypt

    ,
    Ghada Essam

    Microbiology & Immunology Department, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Egypt

    ,
    Nancy M Attia

    Microbiology Department, Medical Research Institute, Alexandria University, Egypt

    &
    Ahmed N Amer

    Microbiology & Immunology Department, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Egypt

    Published Online:https://doi.org/10.2217/fvl-2021-0279

    Aim: The main purpose of this cross-sectional study was to detect the prevalence of drug resistance mutations related to nonnucleoside/nucleoside reverse transcriptase inhibitors (NNRTIs/NRTIs) and protease inhibitors (PIs). Patients & methods: Patients (n = 45) with HIV type-1 were recruited, 30 of whom were treatment naive and 15 treatment experienced. A partial pol gene covering the protease/reverse transcriptase (PRRT) region was amplified and then sequenced by the Sanger method. Results & conclusion: The most common NNRTI/NRTI-related mutations were ‘V179I (24%) and K103N (14.3%)’ and ‘M41L and V75M’ (14.3% each). M36I and H69K were the most prevalent PI-related mutations (86% each). The results of the current study serve as an initial crucial step in defining the overall prevalence of HIV type-1 drug resistance in Egypt.

    Graphical abstract

    References

    • 1. Unaids. Global HIV AIDS statistics – 2020 fact sheet. https://www.unaids.org/en/resources/fact-sheet
    • 2. World Health Organization. Global Health Observatory (GHO) data (HIV/AIDS). https://www.who.int/gho/hiv/hiv_013.jpg?ua=1
    • 3. Unaids. Country progress report-Egypt: Global AIDS monitoring (2020). https://www.unaids.org/sites/default/files/country/documents/EGY_2020_countryreport.pdf
    • 4. Fettig J, Swaminathan M, Murrill CS, Kaplan JE. Global epidemiology of HIV. Infect. Dis. Clin. North Am. 28(3), 323–337 (2014).
    • 5. Mothe B, Ibarrondo J, Llano A, Brander C. Virological, immune and host genetics markers in the control of HIV infection. Dis. Markers 27(3–4), 105–120 (2009).
    • 6. Mccutchan FE. Global epidemiology of HIV. J. Med. Virol. 78(Suppl. 1), S7–S12 (2006).
    • 7. Unaids. HIV/AIDS data. Middle East and North Africa. Egypt data. https://www.unaids.org/en/resources/documents/2020/unaids-data
    • 8. Unaids. HIV/AIDS data. Global and regional data. https://www.unaids.org/en/resources/documents/2020/unaids-data
    • 9. Cohen MS, Chen YQ, Mccauley M et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N. Engl. J. Med. 375(9), 830–839 (2016).
    • 10. Cohen MS, Smith MK, Muessig KE, Hallett TB, Powers KA, Kashuba AD. Antiretroviral treatment of HIV-1 prevents transmission of HIV-1: where do we go from here? Lancet 382(9903), 1515–1524 (2013).
    • 11. Sitnik R, Pinho JR. Quantitation of HIV-1 RNA viral load using nucleic acid sequence based amplification methodology and comparison with other surrogate markers for disease progression. Mem Inst Oswaldo Cruz 93(3), 411–415 (1998).
    • 12. Li T, Qian F, Yuan T et al. Drug resistance mutation profiles of the drug-naïve and first-line regimen-treated HIV-1-infected population of Suzhou, China. Virol. Sin. 32(4), 271–279 (2017).
    • 13. Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF. The multifactorial nature of HIV-1 latency. Trends Mol. Med. 10(11), 525–531 (2004).
    • 14. Elsayed H, Hassany M. Antiretroviral therapy under the wing of the COVID-19 epidemic: one look, and different solutions. South Afr. J. HIV Med. 21(1), 1167 (2020).
    • 15. De Clercq E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents 33(4), 307–320 (2009).
    • 16. De Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antiviral Res. 85(1), 75–90 (2010).
    • 17. Adamson CS. Protease-Mediated Maturation of HIV: inhibitors of protease and the maturation process. Mol. Biol. Int. 2012, 604261 (2012).
    • 18. Tang MW, Shafer RW. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs 72(9), e1–25 (2012).
    • 19. Sharma B. Drug resistance in HIV-1: genetic and molecular bases, mechanisms and strategies to combat the issue. Anal. Bioanal. Chem. 3, 1–2 (2014).
    • 20. Havlir DV, Eastman S, Gamst A, Richman DD. Nevirapine-resistant human immunodeficiency virus: kinetics of replication and estimated prevalence in untreated patients. J. Virol. 70(11), 7894–7899 (1996).
    • 21. Sluis-Cremer N, Tachedjian G. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res. 134(1–2), 147–156 (2008).
    • 22. Martinez-Cajas JL, Wainberg MA. Protease inhibitor resistance in HIV-infected patients: molecular and clinical perspectives. Antiviral Res. 76(3), 203–221 (2007).
    • 23. Deeks SG. International perspectives on antiretroviral resistance. Nonnucleoside reverse transcriptase inhibitor resistance. J. Acquir. Immune Defic. Syndr. 26(Suppl. 1), S25–S33 (2001).
    • 24. Wensing AM, Calvez V, Ceccherini-Silberstein F et al. 2019 update of the drug resistance mutations in HIV-1. Top Antivir. Med. 27(3), 111–121 (2019).
    • 25. Larder BA. Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. J. Gen. Virol. 75(Pt 5), 951–957 (1994).
    • 26. Melikian GL, Rhee SY, Varghese V et al. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J. Antimicrob. Chemother. 69(1), 12–20 (2014).
    • 27. Gupta S, Taylor T, Patterson A et al. A robust PCR protocol for HIV drug resistance testing on low-level viremia samples. Biomed Res. Int. 2017, 1–6 (2017).
    • 28. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41, 95–98 (1999).
    • 29. Edgar RC, Batzoglou S. Multiple sequence alignment. Curr. Opin. Struct. Biol. 16(3), 368–373 (2006).
    • 30. Amer AN, Gaballah A, Emad R, Ghazal A, Attia N. Molecular epidemiology of HIV-1 virus in Egypt: a major change in the circulating subtypes. Curr. HIV Res. 19(5), 448–456 (2021).
    • 31. Shafer Robert W. Rationale and uses of a public HIV drug-resistance database. J. Infect. Dis. 194(Suppl. 1), S51–S58 (2006).
    • 32. Rhee SY, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 31(1), 298–303 (2003).
    • 33. Paredes R, Tzou PL, Van Zyl G et al. Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation. PLoS One 12(7), e0181357 (2017).
    • 34. Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin. Infect. Dis. 42(11), 1608–1618 (2006).
    • 35. Davanos N, Panos G, Gogos CA, Mouzaki A. HIV-1 subtype characteristics of infected persons living in southwestern Greece. HIV AIDS (Auckl) 7, 277–283 (2015).
    • 36. Mokhbat JM, Melhem NM, El-Khatib Z, Zalloua P. Screening for antiretroviral drug resistance among treatment-naive human immunodeficiency virus type 1-infected individuals in Lebanon. J. Infect. Dev. Ctries. 8(3), 339–348 (2014).
    • 37. Abar A, Jlizi A, Youssouf H, Kacem M, Slim A. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naive and first-line treatment failures in Djiboutian patients. Diagn. pathol. 7, 138 (2012).
    • 38. Golmohammadi R, Baesi K, Moradi A, Farrokhi M, Mcfarland W, Parsamajd S. The first characterization of HIV-1 subtypes and drug resistance mutations among antiretrovirally treated patients in Kermanshah, Iran. Intervirology 60(1–2), 33–37 (2017).
    • 39. Al-Mozaini M, Alrahbeni T, Al-Mograbi R, Alrajhi A. Antiretroviral resistance in HIV-1 patients at a tertiary medical institute in Saudi Arabia: a retrospective study and analysis. BMC Infect. Dis. 18(1), 425 (2018).
    • 40. Rhee SY, Liu T, Ravela J, Gonzales MJ, Shafer RW. Distribution of human immunodeficiency virus type 1 protease and reverse transcriptase mutation patterns in 4,183 persons undergoing genotypic resistance testing. Antimicrob. Agents Chemother. 48(8), 3122–3126 (2004).
    • 41. Lopes CA, Soares MA, Falci DR, Sprinz E. The evolving genotypic profile of HIV-1 mutations related to antiretroviral treatment in the north region of Brazil. Biomed Res. Int. 2015, 738528 (2015).
    • 42. Wang J, Li D, Bambara RA, Dykes C. Reverse transcriptase backbone can alter the polymerization and RNase activities of non-nucleoside reverse transcriptase mutants K101E + G190S. J. Gen. Virol. 94(Pt 10), 2297–2308 (2013).
    • 43. Wang Y, Xing H, Liao L et al. The development of drug resistance mutations K103N Y181C and G190A in long term nevirapine-containing antiviral therapy. AIDS Res. Ther. 11, 36 (2014).
    • 44. Gupta RK, Gregson J, Parkin N et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. Lancet Infect. Dis. 18(3), 346–355 (2018).
    • 45. Hoffmann CJ, Charalambous S, Sim J et al. Viremia, resuppression, and time to resistance in human immunodeficiency virus (HIV) subtype C during first-line antiretroviral therapy. Clin. Infect. Dis. 49(12), 1928–1935 (2009).
    • 46. Wang J, Bambara RA, Demeter LM, Dykes C. Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J. Virol. 84(18), 9377–9389 (2010).
    • 47. Niama FR, Vidal N, Diop-Ndiaye H et al. HIV-1 genetic diversity and primary drug resistance mutations before large-scale access to antiretroviral therapy, Republic of Congo. BMC Res. Notes 10(1), 243 (2017).
    • 48. Nijhuis M, Schuurman R, De Jong D et al. Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS 13(17), 2349–2359 (1999).
    • 49. Clemente JC, Hemrajani R, Blum LE, Goodenow MM, Dunn BM. Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N. Biochemistry 42(51), 15029–15035 (2003).
    • 50. Sanches M, Krauchenco S, Martins NH, Gustchina A, Wlodawer A, Polikarpov I. Structural characterization of B and non-B subtypes of HIV-protease: insights into the natural susceptibility to drug resistance development. J. Mol. Biol. 369(4), 1029–1040 (2007).
    • 51. Santos AF, Soares MA. HIV genetic diversity and drug resistance. Viruses 2(2), 503–531 (2010).
    • 52. Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev. 10(2), 67–84 (2008).
    • 53. Okopi J, Idoko J, Isa S et al. Prevalence of minor mutations and natural polymorphisms at the protease gene among treatment-naïve human immunodeficiency virus-1 infected individuals in Jos, Nigeria. J. HIV hum. reprod. 1, 8 (2013).
    • 54. Santoro MM, Perno CF. HIV-1 genetic variability and clinical implications. ISRN Microbiol. 2013, 481314 (2013).
    • 55. Scherrer AU, Ledergerber B, Von Wyl V et al. Minor protease inhibitor mutations at baseline do not increase the risk for a virological failure in HIV-1 subtype B infected patients. PLoS One 7(6), e37983 (2012).
    • 56. Davarpanah MA, Motazedian N, Joulaei H, Aghasadeghi MR, Faramarzi H, Aghah E. Comparison of antiretroviral drug resistance among treatment-naive and treated HIV-infected individuals in Shiraz, Iran. Arch. Virol. 163(1), 99–104 (2018).
    • 57. Chehadeh W, Albaksami O, Altawalah H et al. Phylogenetic analysis of HIV-1 subtypes and drug resistance profile among treatment-naïve people in Kuwait. J. Med. Virol. 87(9), 1521–1526 (2015).
    • 58. Chehadeh W, Albaksami O, John S, Al-Nakib W. Drug resistance-associated mutations in antiretroviral treatment-naïve and-experienced patients in Kuwait. Acta Virol. 62(3), 259–265 (2018).
    • 59. Reuman EC, Rhee SY, Holmes SP, Shafer RW. Constrained patterns of covariation and clustering of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations. J. Antimicrob. Chemother. 65(7), 1477–1485 (2010).
    • 60. Maggiorella MT, Sanarico N, Brindicci G et al. High HIV-1 diversity in immigrants resident in Italy (2008–2017). Sci. Rep. 10(1), 3226 (2020).
    • 61. Jamjoom GA, Azhar EI, Madani TA, Hindawi SI, Bakhsh HA, Damanhouri GA. Genotype and antiretroviral drug resistance of human immunodeficiency virus-1 in Saudi Arabia. Saudi Med. J. 31(9), 987–992 (2010).
    • 62. Hemelaar J, Elangovan R, Yun J et al. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect. Dis. 19(2), 143–155 (2019).
    • 63. Sluis-Cremer N, Wainberg MA, Schinazi RF. Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiol. 10(11), 1773–1782 (2015).
    • 64. Whitcomb JM, Parkin NT, Chappey C, Hellmann NS, Petropoulos CJ. Broad nucleoside reverse-transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates. J. Infect. Dis. 188(7), 992–1000 (2003).
    • 65. Steegen K, Bronze M, Papathanasopoulos MA et al. HIV-1 antiretroviral drug resistance patterns in patients failing NNRTI-based treatment: results from a national survey in South Africa. J. Antimicrob. Chemother. 72(1), 210–219 (2016).
    • 66. Paton NI, Kityo C, Hoppe A et al. Assessment of second-line antiretroviral regimens for HIV therapy in Africa. N. Engl. J. Med. 371(3), 234–247 (2014).
    • 67. Paton NI, Kityo C, Thompson J et al. Nucleoside reverse-transcriptase inhibitor cross-resistance and outcomes from second-line antiretroviral therapy in the public health approach: an observational analysis within the randomised, open-label, EARNEST trial. Lancet HIV 4(8), e341–e348 (2017).
    • 68. Bhargava M, Cajas JM, Wainberg MA, Klein MB, Pai NP. Do HIV-1 non-B subtypes differentially impact resistance mutations and clinical disease progression in treated populations? Evidence from a systematic review. J. Int. AIDS Soc. 17(1), 18944 (2014).
    • 69. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. https://www.who.int/hiv/pub/arv/arv-2016/en/
    • 70. World Health Organization. AIDS Programme. Rapid advice: antiretroviral therapy for HIV infection in adults and adolescents. https://apps.who.int/iris/handle/10665/107280
    • 71. World Health Organization. Antiretroviral therapy of HIV infection in infants and children: towards universal access: recommendations for a public health approach-2010 revision. https://www.ncbi.nlm.nih.gov/books/NBK138576/
    • 72. Coetzer M, Westley B, Delong A et al. Extensive drug resistance in HIV-infected Cambodian children who are undetected as failing first-line antiretroviral therapy by WHO 2010 guidelines. AIDS Res. Hum. Retrovir. 29(7), 985–992 (2013).
    • 73. Dow DE, Shayo AM, Cunningham CK, Reddy EA. Durability of antiretroviral therapy and predictors of virologic failure among perinatally HIV-infected children in Tanzania: a four-year follow-up. BMC Infect. Dis. 14(1), 567 (2014).
    • 74. Salou M, Dagnra AY, Butel C et al. High rates of virological failure and drug resistance in perinatally HIV-1-infected children and adolescents receiving lifelong antiretroviral therapy in routine clinics in Togo. J. Int. AIDS Soc. 19(1), 20683 (2016).
    • 75. Vandormael AM, Boulware DR, Tanser FC, Bärnighausen TW, Stott KE, De Oliveira T. Brief report: virologic monitoring can be a cost-effective strategy to diagnose treatment failure on first-line ART. J. Acquir. Immune Defic. Syndr. 71(4), 462 (2016).
    • 76. Nii-Trebi NI, Brandful JaM, Ibe S et al. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana. J. Med. Microbiol. 66(11), 1663–1672 (2017).