We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fvl-2021-0105

Aim: Lujo is a modern zoonotic virus that is potentially fatal and spreads by bodily fluids. In this research, immunoinformatic tools are used to build a vaccine. Methodology: The epitopes of cytotoxic T-lymphocytes, helper T-lymphocytes and linear B-lymphocytes were predicted from the most antigenic protein. The designed vaccine's physiochemical properties and 3D structure have been forecasted. Low free energy and strong binding affinity estimated in molecular docking against Toll-like receptor 4 (TLR4) and dynamic simulation. Furthermore, in silico cloning in the Escherichia coli K12 host system was performed for high level of expression. Conclusion: Finally, immune simulation was used to determine immune responses to the vaccine that was formulated confirming the developed vaccine as a good candidate against Lujo virus.

References

  • 1. Briese T, Paweska JT, McMullan LK et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever–associated arenavirus from Southern Africa. PLOS Pathog. 5(5), 1–8 (2009).
  • 2. Bergeron É, Chakrabarti AK, Bird BH et al. Reverse genetics recovery of Lujo virus and role of virus RNA secondary structures in efficient virus growth. J. Virol. 86(19), 10759–10765 (2012).
  • 3. Bull JJ, Sanjuán R, Wilke CO. Theory of lethal mutagenesis for viruses. J. Virol. 81(6), 2930–2939 (2007).
  • 4. Rosenberg R. Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cell. Mol. Life Sci. 72(6), 1115–1125 (2015).
  • 5. Sewlall NH, Richards G, Duse A et al. Clinical features and patient management of Lujo hemorrhagic fever. PLOS Negl. Trop. Dis. 8(11), 1–11 (2014).
  • 6. Charrel RN, de Lamballerie X, Emonet S. Phylogeny of the genus Arenavirus. Curr. Opin. Microbiol. 11(4), 362–368 (2008).
  • 7. Amman BR, Pavlin BI, Albariño CG et al. Pet rodents and fatal lymphocytic choriomeningitis in transplant patients. Emerg. Infect. Dis. 13(5), 719–725 (2007).
  • 8. Kunz S, de la Torre JC. Breaking the barrier: host cell invasion by Lujo virus. Cell Host Microbe 22(5), 583–585 (2017).
  • 9. Jae LT, Raaben M, Herbert AS et al. Lassa virus entry requires a trigger-induced receptor switch. Science 344(6191), 1506–1510 (2014).
  • 10. Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell. Mol. Immunol. 15(2), 182–184 (2018).
  • 11. Kar T, Narsaria U, Basak S et al. A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports 10(1), 10895 (2020).
  • 12. Palatnik-de-Sousa CB, Soares I da S, Rosa DS. Editorial: epitope discovery and synthetic vaccine design. Front. Immunol. 9, 1–3 (2018).
  • 13. Lu C, Meng S, Jin Y et al. A novel multi-epitope vaccine from MMSA-1 and DKK1 for multiple myeloma immunotherapy. Brit. J. Haema. 178(3), 413–426 (2017).
  • 14. Khan A, Junaid M, Kaushik AC et al. Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches. PLOS ONE 13(5), e0196484 (2018).
  • 15. Buonaguro L. HEPAVAC Consortium. Developments in cancer vaccines for hepatocellular carcinoma. Can. Immunol. Immunother. 65(1), 93–99 (2016).
  • 16. Kuo T, Wang C, Badakhshan T, Chilukuri S, BenMohamed L. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine. Vaccine 32(50), 6733–6745 (2014).
  • 17. Saadi M, Karkhah A, Nouri HR. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol. 51, 227–234 (2017).
  • 18. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Jour. Biomed. Inform. 53, 405–414 (2015).
  • 19. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins. BioDrugs 24(1), 1–8 (2010).
  • 20. Gatnik MF, Worth AP. Review of Software Tools for Toxicity Prediction JRC Sci. Tech. Rep. (1018-5593), 11–13 10.2788/6010 (2010).
  • 21. Stadler MB, Stadler BM. Allergenicity prediction by protein sequence. FASEB J. 17(9), 1141–1143 (2003).
  • 22. Backert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome. Med. 7(1), 119 (2015).
  • 23. Tosta SF de O, Passos MS, Kato R et al. Multi-epitope-based vaccine against yellow fever virus applying immunoinformatics approaches. J. Biomol. Struct. Dyn. 39, 1–17 (2020).
  • 24. Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol. Biosyst. 13(4), 699–713 (2017).
  • 25. Nezafat N, Karimi Z, Eslami M, Mohkam M, Zandian S, Ghasemi Y. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput. Biol. Chem. 62, 82–95 (2016).
  • 26. Nezafat N, Ghasemi Y, Javadi G, Khoshnoud MJ, Omidinia E. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J. Theor. Biol. 349, 121–134 (2014).
  • 27. Lennerz V, Gross S, Gallerani E et al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Can. Immunol Immunoth. 63(4), 381–394 (2014).
  • 28. Chen C, Huang H, Mazumder R et al. Computational clustering for viral reference proteomes. Bioinformatics 32(13), 2041–2043 (2016).
  • 29. Ilinskaya AN, Dobrovolskaia MA. Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol. Appl. Pharmacol. 299, 70–77 (2016).
  • 30. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinfo. 8(1), 4 (2007).
  • 31. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinfo. 8, 424 (2007).
  • 32. Moutaftsi M, Peters B, Pasquetto V et al. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat. Biotechnol. 24(7), 817–819 (2006).
  • 33. Calis JJA, Maybeno M, Greenbaum JA et al. Properties of MHC class i presented peptides that enhance immunogenicity. PLOS Com. Bio. 9(10), e1003266 (2013).
  • 34. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2 – a server for in silico prediction of allergens. J Mol. Model. 20(6), 2278 (2014).
  • 35. Gupta S, Kapoor P, Chaudhary K et al. In silico approach for predicting toxicity of peptides and proteins. PLOS ONE 8(9), e73957 (2013).
  • 36. Melssen M, Slingluff CL. Vaccines targeting helper T cells for cancer immunotherapy. Cur. Opi. Immun. 47, 85–92 (2017).
  • 37. Wang P, Sidney J, Kim Y et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinfo. 11, 568 (2010).
  • 38. Dhanda SK, Gupta S, Vir P, Raghava GPS. “Prediction of IL4 Inducing Peptides”. (2013). https://www.hindawi.com/journals/jir/2013/263952/
  • 39. Nagpal G, Usmani SS, Dhanda SK et al. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci. Rep. 7(1), 1–10 (2017).
  • 40. Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II binders. Biology Direct 8(1), 30 (2013).
  • 41. Zabel F, Kündig TM, Bachmann MF. Virus-induced humoral immunity: on how B cell responses are initiated. Cur. Op. Viro. 3(3), 357–362 (2013).
  • 42. Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1), 40–48 (2006).
  • 43. Pasquale AD, Preiss S, Silva FTD, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines 3(2), 320–343 (2015).
  • 44. Alderson MR, McGowan P, Baldridge JR, Probst P. TLR4 agonists as immunomodulatory agents. J. Endotox. Res. 12(5), 313–319 (2006).
  • 45. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Pro. Eng. Des. Sel. 14(8), 529–532 (2001).
  • 46. Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33(19), 3098–3100 (2017).
  • 47. Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40(Web Server issue), W294–297 (2012).
  • 48. Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41(W1), W384–W388 (2013).
  • 49. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(Web Server issue), W407–W410 (2007).
  • 50. Craig DB, Dombkowski AA. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinfo. 14(1), 346 (2013).
  • 51. Grote A, Hiller K, Scheer M et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33(Suppl. 2), W526–W531 (2005).
  • 52. Meng XY, Zhang HX, Mezei M, Cui M. Molecular Docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aid. Dru. Des. 7(2), 146–157 (2011).
  • 53. Tovchigrechko A, Vakser IA. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 34(Web Server issue), W310–W314 (2006).
  • 54. Weng G, Wang E, Wang Z et al. HawkDock: a web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 47(W1), W322–W330 (2019).
  • 55. Salmaso V, Moro S.Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front. Pharmacol. 9, 1–16 (2018).
  • 56. López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 42(Web Server issue), W271–276 (2014).
  • 57. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLOS ONE 5(4), e9862 (2010).
  • 58. Dawood RM, Moustafa RI, Abdelhafez TH et al. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infec. Dis. 19(1), 932 (2019).
  • 59. Kadam A, Sasidharan S, Saudagar P. Computational design of a potential multi-epitope subunit vaccine using immunoinformatics to fight Ebola virus. Infec. Gen. Evo. 85, 104464 (2020).
  • 60. Majee P, Jain N, Kumar A. Designing of a multi-epitope vaccine candidate against Nipah virus by in silico approach: a putative prophylactic solution for the deadly virus. J. Biomol. Struc. Dyn. 0(0), 1–20 (2020).
  • 61. Sabetian S, Nezafat N, Dorosti H, Zarei M, Ghasemi Y. Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. J. Biomol. Struct. Dyn. 37(10), 2546–2563 (2019).
  • 62. Sayed SB, Nain Z, Khan MdSA, Abdulla F, Tasmin R, Adhikari UK. Exploring Lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int. J. Pept. Res. Ther. 2, 1–19 (2020).
  • 63. Shahid F, Ashfaq UA, Javaid A, Khalid H. Immunoinformatics guided rational design of a next generation multi epitope-based peptide (MEBP) vaccine by exploring Zika virus proteome. Infec. Gene. Evo. 80, 104199 (2020).
  • 64. Oli AN, Obialor WO, Ifeanyichukwu MO et al. Immunoinformatics and vaccine development: an overview. Immunoter. Ther. 9, 13–30 (2020).
  • 65. Islam E. Development of chemokine CXCL12-dependent immunotoxin against small cell lung cancer using in silico approaches. Infor. Med. Unlo. 25, 100676 (2021).
  • 66. Nezafat N, Ghasemi Y, Javadi G, Khoshnoud MJ, Omidinia E. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J. Theor. Biol. 349, 121–134 (2014).
  • 67. Verma S, Sugadev R, Kumar A, Chandna S, Ganju L, Bansal A. Multi-epitope DnaK peptide vaccine against S. Typhi: an in silico approach. Vaccine 36(28), 4014–4022 (2018).
  • 68. Jiang P, Cai Y, Chen J et al. Evaluation of tandem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. Vaccine 35(23), 3096–3103 (2017).
  • 69. Lu IN, Farinelle S, Sausy A, Muller CP. Identification of a CD4 T-cell epitope in the hemagglutinin stalk domain of pandemic H1N1 influenza virus and its antigen-driven TCR usage signature in BALB/c mice. Cell. Mol. Immu. 14(6), 511–520 (2017).
  • 70. Rojas JM, Avia M, Martín V, Sevilla N.IL-10: a multifunctional cytokine in viral infections. J. Immunol. Res. 2017, 1–14 (2017).
  • 71. Malmgaard L. Induction and regulation of IFNs during viral infections. J. Interf. Cyto. Res. 24(8), 439–454 (2004).
  • 72. Shamriz S, Ofoghi H, Moazami N. Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Com. Bio. Med. 76, 24–29 (2016).
  • 73. Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect. Genet. Evol. 49, 309–317 (2017).
  • 74. Dar HA, Zaheer T, Shehroz M et al. Immunoinformatics-aided design and evaluation of a potential multi-epitope vaccine against Klebsiella pneumoniae. Vaccines (Basel) 7(3), 1–17 (2019).
  • 75. Liu T, Wang Y, Luo X et al. Enhancing protein stability with extended disulfide bonds. Proc. Natl Acad. Sci. USA 113(21), 5910–5915 (2016).
  • 76. Yahaya MAF, Bakar ARA, Stanslas J, Nordin N, Zainol M, Mehat MZ. Insights from molecular docking and molecular dynamics on the potential of vitexin as an antagonist candidate against lipopolysaccharide (LPS) for microglial activation in neuroinflammation. BMC Biotech. 21(1), 38 (2021).
  • 77. Brandstadter JD, Yang Y. Natural killer cell responses to viral infection. J. Innate. Immun. 3(3), 274–279 (2011).