We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

CRISPR in HIV: dangers of CCR5 deletion

    Stefano Rusconi

    *Author for correspondence: Tel.: +39 02 50319761; Fax: +39 02 50319758;

    E-mail Address: stefano.rusconi@unimi.it

    Infectious Diseases Unit, DIBIC Luigi Sacco, Università degli Studi di Milano, Milan, Italy

    &
    Andrea Giacomelli

    Infectious Diseases Unit, DIBIC Luigi Sacco, Università degli Studi di Milano, Milan, Italy

    Published Online:https://doi.org/10.2217/fvl-2020-0039
    Free first page

    References

    • 1. Cyranoski D. The CRISPR-baby scandal: what's next for human gene-editing. Nature 566(7745), 440–442 (2019).
    • 2. Samson M, Libert F, Doranz BJ et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593), 722–725 (1996).
    • 3. Stephens JC, Reich DE, Goldstein DB et al. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62(6), 1507–1515 (1998).
    • 4. Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb. Perspect Med. 2(8), a006866 (2012).
    • 5. Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical? JAMA 283(20), 2701–2711 (2000).
    • 6. Sollitto S, Hoffman S, Mehlman M, Lederman RJ, Youngner SJ, Lederman MM. Intrinsic conflicts of interest in clinical research: a need for disclosure. Kennedy Inst. Ethics J. 13(2), 83–91 (2003).
    • 7. Rusconi S. Investigators involvement in the care of HIV-infected individuals: the experience in recent clinical trials. J. Acquir. Immune Defic. Syndr. 58(4), e118–e119 (2011).
    • 8. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don't edit the human germ line. Nature 519(7544), 410–411 (2015).
    • 9. UNAIDS. 90-90-90: treatment for all. http://www.unaids.org/en/resources/909090
    • 10. Cohen MS, Chen YQ, McCauley M et al. HPTN 052 study team. antiretroviral therapy for the prevention of HIV-1 transmission. N. Engl. J. Med. 375(9), 830–839 (2016).
    • 11. Eisinger RW, Dieffenbach CW, Fauci AS. HIV viral load and transmissibility of HIV infection: undetectable equals untransmittable. JAMA 321(5), 451–452 (2019).
    • 12. Molina JM, Capitant C, Spire B. ANRS IPERGAY Study Group. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N. Engl. J. Med. 373(23), 2237–2246 (2015).
    • 13. Gao C. The future of CRISPR technologies in agriculture. Nat. Rev. Mol. Cell Biol. 19(5), 275–276 (2018).
    • 14. Kyrou K, Hammond A, Galizi R et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36(11), 1062–1066 (2018).
    • 15. Ledford H. Quest to use CRISPR against disease gains ground. Nature 577(7789), 156 (2020).
    • 16. Elvin SJ, Williamson ED, Scott JC et al. Evolutionary genetics: ambiguous role of CCR5 in Y. pestis infection. Nature 430(6998), 417 (2004).
    • 17. Glass WG, McDermott DH, Lim JK et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 203(1), 35–40 (2006).
    • 18. Falcon A, Cuevas MT, Rodriguez-Frandsen A et al. CCR5 deficiency predisposes to fatal outcome in influenza virus infection. J. Gen. Virol. 96(8), 2074–2078 (2015).
    • 19. Maestri A, dos Santos MC, Ribeiro-Rodrigues EM et al. The CCR5Δ32 (rs333) polymorphism is not a predisposing factor for severe pandemic influenza in the Brazilian admixed population. BMC Res. Notes 8, 326 (2015).
    • 20. Matos AR, Martins JSCC, Oliveira MLA, Garcia CC, Siqueira MM. Human CCR5Δ32 (rs333) polymorphism has no influence on severity and mortality of influenza A(H1N1)pdm09 infection in Brazilian patients from the post pandemic period. Infect. Genet. Evol. 67, 55–59 (2019).
    • 21. Hütter G, Nowak D, Mossner M et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360(7), 692–698 (2009).
    • 22. Rodréguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez ML, Barrera-Saldaña HA. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases. Int. J. Mol. Med. 43(4), 1559–1574 (2019).