We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Biological features of hepatitis B virus strains associated with fulminant hepatitis

    Ivana Lazarevic

    *Author for correspondence:

    E-mail Address: ivana.lazarevic@med.bg.ac.rs

    Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia

    ,
    Ana Banko

    Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia

    ,
    Danijela Miljanovic

    Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia

    &
    Maja Cupic

    Institute of Microbiology & Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia

    Published Online:https://doi.org/10.2217/fvl-2020-0011

    Accumulating evidence suggests that hepatitis B virus (HBV) biological features may influence the course and clinical manifestations of infection and possibly the development of fulminant hepatitis (FH). Since HBV is not a cytocidal virus, virus-induced liver damage results from an interplay between the virus replication and the host's defense. Therefore, viral factors contributing to enhanced replication, induction of a stronger immune attack or apoptosis of hepatocytes could be crucial in development of FH. Numerous mutations in basal core promoter, pre-C, C and S regions of the HBV genome contribute to development of FH by different mechanisms, including enhanced viral replication, the loss of a decoy for immune response, unbalanced expression of viral proteins and retention of unprocessed cytotoxic proteins in hepatocytes.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 386(10003), 1546–1555 (2015).
    • 2. GBD 2013 Mortality Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963), 117–171 (2015).
    • 3. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral. Hepat. 11(2), 97–107 (2004).
    • 4. WHO Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Infection. World Health Organization, Geneva, Switzerland (2015). https://apps.who.int/iris/bitstream/handle/10665/154590/9789241549059_eng.pdf
    • 5. Mindikoglu AL, Regev A, Schiff ER. Hepatitis B virus reactivation after cytotoxic chemotherapy: the disease and its prevention. Clin. Gastroenterol. Hepatol. 4(9), 1076–1081 (2006).
    • 6. Trey C, Davidson CS. The management of fulminant hepatic failure. Prog. Liver. Dis. 3, 282–298 (1970).
    • 7. Ichai P, Samuel D. Etiology and prognosis of fulminant hepatitis in adults. Liver. Transpl. 14(2), S67–79 (2008).
    • 8. Polson J, Lee WM. American association for the study of liver disease. AASLD position paper: the management of acute liver failure. Hepatology 41(5), 1179–1197 (2005).
    • 9. Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet 376(9736), 190–201 (2010).
    • 10. Acharya SK, Panda SK, Saxena A, Dattagupta S. Acute hepatic failure in India: a prospective from the East. J. Gastroenterol. Hepatol. 15(5), 473–479 (2000).
    • 11. Acharya SK, Batra Y, Hazari S, Choudhury V, Panda SK, Dattagupta S. Etiopathogenesis of acute hepatic failure: Eastern versus Western countries. J. Gastroenterol. Hepatol. 17(3), S268–S273 (2002).
    • 12. Ostapowicz G, Lee WM. Acute hepatic failure: a western perspective. J. Gastroenterol. Hepatol. 15(5), 480–488 (2000).
    • 13. Sheil AG, McCaughan GW, Thompson JF, Dorney SF, Stephen MS, Bookallil MJ. The first five years' clinical experience of the Australian National Liver Transplantation Unit. Med. J. Aust. 156(1), 9–16 (1992).
    • 14. Escorsell A, Mas A, de la Mata M the Spanish Group for the Study of Acute Liver Failure. Acute liver failure in Spain: analysis of 267 cases. Liver. Transpl. 13(10), 1389–1395 (2007).
    • 15. European Association for the Study of the Liver. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 66(5), 1047–1081 (2017).
    • 16. Du WJ, Liu L, Sun C, Yu JH, Xiao D, Li Q. Prodromal fever indicates a high risk of liver failure in acute hepatitis B. Int. J. Infect. Dis. 57, 98–103 (2017).
    • 17. Mendizabal M, Tagliafichi V, Rubinstein F et al. Liver transplantation in adults with acute liver failure: outcomes from the Argentinean Transplant Registry. Ann. Hepatol. 18(2), 338–344 (2019).
    • 18. Berk PD, Popper H. Fulminant hepatic failure. Am. J. Gastroenterol. 69(3pt2), 349–400 (1978).
    • 19. Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J. Clin. Virol. 34(1), S1–S3 (2005).
    • 20. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 373(9663), 582–592 (2009).
    • 21. Stravitz RT, Lee WM. Acute liver failure. Lancet 394(10201), 869–881 (2019).
    • 22. Reuben A, Koch DG, Lee WM the Acute Liver Failure Study Group. Drug-induced acute liver failure: Results of a U.S. multicenter, prospective study. Hepatology 52(6), 2065–2076 (2010).
    • 23. Pattullo V. Prevention of Hepatitis B reactivation in the setting of immunosuppression. Clin. Mol. Hepatol. 22(2), 219–237 (2016).
    • 24. Elefsiniotis I, Vezali E, Vrachatis D et al. Post-partum reactivation of chronic hepatitis B virus infection among hepatitis B e-antigen-negative women. World. J. Gastroenterol. 21(4), 1261–1267 (2015).
    • 25. Kamitsukasa H, Iri M, Tanaka A et al. Spontaneous reactivation of hepatitis B virus (HBV) infection in patients with resolved or occult HBV infection. J. Med. Virol. 87(4), 589–600 (2015).
    • 26. Shouval D, Shibolet O. Immunosuppression and HBV reactivation. Semin. Liver. Dis. 33(2), 167–177 (2013).
    • 27. Valaydon ZS, Locarnini SA. The virological aspects of hepatitis B. Best. Pract. Res. Clin. Gastroenterol. 31(3), 257–264 (2017).
    • 28. Milich D, Liang TJ. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 38(5), 1075–1086 (2003).
    • 29. Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol. 10(1), 122–133 (2008).
    • 30. Ni Y, Lempp FA, Mehrle S et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146(4), 1070–1083 (2014).
    • 31. Caballero A, Tabernero D, Buti M, Rodriguez-Frias F. Hepatitis B virus: The challenge of an ancient viruswith multiple faces and a remarkable replication strategy. Antivir. Res. 158, 34–44 (2018).
    • 32. Vierling JM. The immunology of hepatitis B. Clin. Liver. Dis. 11(4), 727–759 (2007).
    • 33. Okamoto H, Imai M, Kametani M, Nakamura T, Mayumi M. Genomic heterogeneity of hepatitis B virus in a 54-year-old woman who contracted the infection through materno-fetal transmission. Jpn J. Exp. Med. 57(4), 231–236 (1987).
    • 34. Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H. Viral dynamics in hepatitis B virus infection. Proc. Natl Acad. Sci. USA 93(9), 4398–4402 (1996).
    • 35. Weber B. Genetic variability of the S gene of hepatitis B virus: clinical and diagnostic impact. J. Clin. Virol. 32(2), 102–112 (2005).
    • 36. Kay A, Zoulim F. Hepatitis B virus genetic variability and evolution. Virus. Res. 127(2), 164–176 (2007). • Provides detailed overview of hepatitis B virus (HBV) genetic variability, including natural variability, which is the result of gradual evolution and variability that results from adaptation of the virus to different selective pressures.
    • 37. Okamoto H, Tsuda F, Sakugawa H et al. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J. Gen. Virol. 69(pt10), 2575–2583 (1988).
    • 38. Tong S, Revill P. Overview of hepatitis B viral replication and genetic variability. J. Hepatol. 64(1), S4–S16 (2016).
    • 39. Rajoriya N, Combet C, Zoulim F, Janssen HLA. How viral genetic variants and genotypes influence disease and treatment outcome of chronic hepatitis B. Time for an individualised approach? J. Hepatol. 67(6), 1281–1297 (2017).
    • 40. Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology. 57(3–4), 141–150 (2014).
    • 41. Lin CL, Kao JH. The clinical implications of hepatitis B virus genotype: Recent advances. J. Gastroenterol. Hepatol. 26(1), 123–130 (2011).
    • 42. Thuy PT, Alestig E, Liem NT, Hannoun C, Lindh M. Genotype X/C recombinant (putative genotype I) of hepatitis B virus is rare in Hanoi, Vietnam-genotypes B4 and C1 predominate. J. Med. Virol. 82(8), 1327–1333 (2010).
    • 43. Olinger CM, Jutavijittum P, Hubschen JM et al. Possible new hepatitis B virus genotype, southeast Asia. Emerg. Infect. Dis. 14(11), 1777–1780 (2008).
    • 44. Tatematsu K, Tanaka Y, Kurbanov F et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J. Virol. 83(20), 10538–10547 (2009).
    • 45. Liu M, Chan CW, McGilvray I, Ning Q, Levy GA. Fulminant viral hepatitis: molecular and cellular basis, and clinical implications. Expert. Rev. Mol. Med. 2001, 1–19 (2001).
    • 46. Jouanguy E. Human genetic basis of fulminant viral hepatitis. Hum. Genet. doi:10.1007/s00439-020-02166-y (2020) (Epub ahead of print).
    • 47. Baumert TF, Rogers SA, Hasegawa K, Liang TJ. Two core promotor mutations identified in a hepatitis B virus strain associated with fulminant hepatitis resulting in enhanced viral replication. J. Clin. Invest. 98(10), 2268–2276 (1996).
    • 48. Hasegawa K, Huang J, Rogers SA, Blum HE, Liang TJ. Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. J. Virol. 68(3), 1651–1659 (1994).
    • 49. Rivero M, Crespo J, Fabrega E et al. Apoptosis mediated by the Fas system in the fulminant hepatitis by hepatitis B virus. J. Viral. Hepat. 9(2), 107–113 (2002).
    • 50. Hadziyannis SJ, Lieberman HM, Karvountzis GG, Shafritz DA. Analysis of liver disease, nuclear HBcAg, viral replication, and hepatitis B virus DNA in liver and serum of HBeAg vs. anti-HBe positive carriers of hepatitis B virus. Hepatology 3(5), 656–662 (1983).
    • 51. Funk ML, Rosenberg DM, Lok AS. World-wide epidemiology of HBeAg-negative chronic hepatitis B and associated precore and core promoter variants. J. Viral. Hepat. 9(1), 52–61 (2002).
    • 52. Kosaka Y, Takase K, Kojima M et al. Fulminant hepatitis B: induction by hepatitis B virus mutants defective in the precore region and incapable of encoding e antigen. Gastroenterology 100(4), 1087–1094 (1991).
    • 53. Liang TJ, Hasegawa K, Rimon N, Wands JR, Ben-Porath E. A hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. N. Engl. J. Med. 324, 1705–1709 (1991).
    • 54. Omata M, Ehata T, Yokosuka O, Hosoda K, Ohto M. Mutations in the precore region of hepatitis B virus DNA in patients with fulminant and severe hepatitis. N. Engl. J. Med. 324(24), 1699–1704 (1991).
    • 55. Sato S, Suzuki K, Akahane Y et al. Hepatitis B virus strains with mutations in the core promoter in patients with fulminant hepatitis. Ann. Intern. Med. 122(4), 241–249 (1995).
    • 56. Ozasa A, Tanaka Y, Orito E et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology 44(2), 326–334 (2006).
    • 57. Kusakabe A, Tanaka Y, Mochida S et al. Case–control study for the identification of virological factors associated with fulminant hepatitis B. Hepatol. Res. 39(7), 648–656 (2009).
    • 58. Sugiyama M, Tanaka Y, Kurbanov F, Nakayama N, Mochida S, Mizokami M. Influences on hepatitis B virus replication by a naturally occurring mutation in the core gene. Virology. 365(2), 285–291 (2007).
    • 59. Inoue J, Ueno Y, Kawamura K et al. Association between S21 substitution in the core protein of hepatitis B virus and fulminant hepatitis. J. Clin. Virol. 55(2), 147–152 (2012).
    • 60. Parekh S, Zoulim F, Ahn SH et al. Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J. Virol. 77(12), 6601–6612 (2003).
    • 61. Chen IH, Huang CJ, Ting LP. Overlapping initiator and TATA box functions in the basal core promoter of hepatitis B virus. J. Virol. 69(6), 3647–3657 (1995).
    • 62. Li J, Buckwold VE, Hon MW, Ou JH. Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. J. Virol. 73(2), 1239–1244 (1999).
    • 63. Tsai A, Kawai S, Kwei K et al. Chimeric constructs between two hepatitis B virus genomes confirm transcriptional impact of core promoter mutations and reveal multiple effects of core gene mutations. Virology. 387(2), 364–372 (2009).
    • 64. Jammeh S, Tavner F, Watson R, Thomas HC, Karayiannis P. Effect of basal core promoter and pre-core mutations on hepatitis B virus replication. J. Gen. Virol. 89(pt4), 901–909 (2008).
    • 65. Hoshino T, Takagi H, Suzuki Y et al. Fatal fulminant hepatitis caused by infection with subgenotype A1 hepatitis B virus with C1766T/T1768A core promoter mutations. Clin. J. Gastroenterol. 9(3), 160–167 (2016).
    • 66. Guidotti LG, Matzke B, Pasquinelli C, Shoenberger JM, Rogler CE, Chisari FV. The hepatitis B virus (HBV) precore protein inhibits HBV replication in transgenic mice. J. Virol. 70(10), 7056–7061 (1996).
    • 67. Lamberts C, Nassal M, Velhagen I, Zentgraf H, Schroder CH. Precore-mediated inhibition of hepatitis B virus progeny DNA synthesis. J. Virol. 67(7), 3756–3762 (1993).
    • 68. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J. Hepatol. 48(2), 335–352 (2008).
    • 69. Chen MT, Billaud JN, Sallberg M et al. A function of the hepatitis B virus pre-core protein is to regulate the immune response to the core antigen. Proc. Natl. Acad. Sci. USA 101(41), 14913–14918 (2004).
    • 70. Chen M, Sallberg M, Hughes J et al. Immune tolerance split between hepatitis B virus pre-core and core proteins. J. Virol. 79(5), 3016–3027 (2005).
    • 71. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc. Natl. Acad. Sci. USA 87(17), 6599–6603 (1990).
    • 72. Bocharov G, Ludewig B, Bertoletti A et al. Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocyte responses. J. Virol. 78(5), 2247–2254 (2004).
    • 73. Inoue J, Ueno Y, Nagasaki F et al. Enhanced intracellular retention of a hepatitis B virus strain associated with fulminant hepatitis. Virology. 395(2), 202–209 (2009).
    • 74. Chisari FV. Cytotoxic T cells and viral hepatitis. J. Clin. Invest. 99(7), 1472–1477 (1997).
    • 75. Ning B, Shih C. Nucleolar localization of human hepatitis B virus capsid protein. J. Virol. 78(24), 13653–13668 (2004).
    • 76. Inoue J, Ueno Y, Wakui Y et al. Enhanced replication of hepatitis B virus with frameshift in the precore region found in fulminant hepatitis patients. J. Infect. Dis. 204(7), 1017–1025 (2011).
    • 77. Sendi H, Mehrab-Mohseni M, Shahraz S et al. CTL escape mutations of core protein are more frequent in strains of HBeAg negative patients with low levels of HBV DNA. J. Clin. Virol. 46(3), 259–264 (2009).
    • 78. Sato N, Watanabe S, Miura K et al. Acute liver failure caused by the transmission of hepatitis B virus from the spouse after 38 years of marriage. Intern. Med. 58(20), 2963–2968 (2019).
    • 79. Anastasiou OE, Widera M, Westhaus S et al. Clinical outcome and viral genome variability of hepatitis B virus-induced acute liver failure. Hepatology 69(3), 993–1003 (2019).
    • 80. Arankalle VA, Gandhi S, Lole KS, Chadha MS, Gupte GM, Lokhande MU. An outbreak of hepatitis B with high mortality in India: association with precore, basal core promoter mutants and improperly sterilized syringes. J. Viral. Hepat. 18(4), e20–e28 (2011).
    • 81. Khare S, Negi SS, Singh S et al. Genetic analysis of precore/core and partial pol genes in an unprecedented outbreak of fulminant hepatitis B in India. Epidemiol. Infect. 140(10), 1823–1829 (2012).
    • 82. Trinks J, Marciano S, Esposito I et al. The genetic variability of hepatitis B virus subgenotype F1b precore/core gene is related to the outcome of the acute infection. Virus. Res. 277, 197840 (2020).
    • 83. Nian X, Xu Z, Liu Y et al. Association between hepatitis B virus basal core promoter/precore region mutations and the risk of hepatitis B-related acute-on-chronic liver failure in the Chinese population: an updated meta-analysis. Hepatol. Int. 10(4), 606–615 (2016).
    • 84. Pollicino T, Cacciola I, Saffioti F, Raimondo G. Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. J. Hepatol. 61(2), 408–417 (2014). •• Gives detail explanation of the influence pre-S/S variability has on clinical outcome of HBV infection including development of fulminant hepatitis (FH).
    • 85. Fan YF, Lu CC, Chen WC et al. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 33(1), 277–286 (2001).
    • 86. Chen BF, Liu CJ, Jow GM, Chen PJ, Kao JH, Chen DS. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 130(4), 1153–1168 (2006).
    • 87. Chen CH, Hung CH, Lee CM et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology. 133(5), 1466–1474 (2007).
    • 88. Choi MS, Kim DY, Lee DH et al. Clinical significance of pre-S mutations in patients with genotype C hepatitis B virus infection. J. Viral. Hepat. 14(3), 161–168 (2007).
    • 89. Zhang D, Dong P, Zhang K et al. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment. BMC. Microbiol. 12, 307 (2012).
    • 90. Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc. Natl Acad. Sci. USA 88(3), 1059–1063 (1991).
    • 91. Fernholz D, Galle PR, Stemler M, Brunetto M, Bonino F, Will H. Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology 194(1), 137–148 (1993).
    • 92. Wu CC, Chen YS, Cao L, Chen XW, Lu MJ. Hepatitis B virus infection: Defective surface antigen expression and pathogenesis. World. J. Gastroenterol. 24(31), 3488–3499 (2018).
    • 93. Pollicino T, Zanetti AR, Cacciola I et al. Pre-S2 defective hepatitis B virus infection in patients with fulminant hepatitis. Hepatology 26(2), 495–499 (1997).
    • 94. Yuasa R, Takahashi K, Dien B-V et al. Properties of hepatitis B virus genome recovered from Vietnamese patients with fulminant hepatitis in comparison with those of acute hepatitis. J. Med. Virol. 61(1), 23–28 (2000).
    • 95. Ogunbosi B, Smuts H, Eley B, Korsman S, De Lacy R, Hardie DR. Fulminant hepatitis B virus (HBV) infection in an infant following mother-to-child transmission of an e-minus HBV mutant: Time to relook at HBV prophylaxis in South African infants. S. Afr. Med. J. 108(5), 389–392 (2018).
    • 96. Ando K, Moriyama T, Guidotti LG et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J. Exp. Med. 178(5), 1541–1554 (1993).
    • 97. Kalinina T, Riu A, Fischer L, Will H, Sterneck M. A dominant hepatitis B virus population defective in virus secretion because of several S-gene mutations from a patient with fulminant hepatitis. Hepatology 34(2), 385–394 (2001).
    • 98. Mina T, Amini Bavil Olyaee S, Tacke F, Maes P, Van Ranst M, Pourkarim MR. Genomic diversity of hepatitis b virus infection associated with fulminant hepatitis B development. Hepat. Mon. 15(6), e29477 (2015). •• Provides detailed review on HBV genome diversities related to clinical outcome, particularly fulminant hepatitis.
    • 99. Anastasiou OE, Theissen M, Verheyen J et al. Clinical and virological aspects of HBV reactivation: a focus on acute liver failure. Viruses 11(9), E863 (2019).
    • 100. Mina T, Amini-Bavil-Olyaee S, Shirvani-Dastgerdi E, Trovão NS, Van Ranst M, Pourkarim MR. 15 year fulminant hepatitis B follow-up in Belgium: viral evolution and signature of demographic change. Infect. Genet. Evol. 49, 221–225 (2017). • Gives insight in mutational patterns of different open reading frames of HBV isolates from FH cases reported during 15 years of follow-up.
    • 101. Lazarevic I, Banko A, Miljanovic D, Cupic M. Immune-escape hepatitis B virus mutations associated with viral reactivation upon immunosuppression. Viruses. 11(9), E778 (2019).
    • 102. Lentz TB, Loeb DD. Roles of the envelope proteins in the amplification of covalently closed circular DNA and completion of synthesis of the plus-strand DNA in hepatitis B virus. J. Virol. 85(22), 11916–11927 (2011).
    • 103. Summers J, Smith PM, Horwich AL. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J. Virol. 64(6), 2819–2824 (1990).
    • 104. Pollicino T, Amaddeo G, Restuccia A et al. Impact of hepatitis B virus (HBV) preS/S genomic variability on HBV surface antigen and HBV DNA serum levels. Hepatology. 56(2), 434–443 (2012).
    • 105. Lenhoff RJ, Summers J. Construction of avian hepadnavirus variants with enhanced replication and cytopathicity in primary hepatocytes. J. Virol. 68(9), 5706–5713 (1994).
    • 106. Lenhoff RJ, Luscombe CA, Summers J. Acute liver injury following infection with a cytopathic strain of duck hepatitis B virus. Hepatology 29(2), 563–571 (1999).
    • 107. Tanwar S, Dusheiko G. Is there any value to hepatitis B virus genotype analysis? Curr. Gastroenterol. Rep. 14(1), 37–46 (2012).
    • 108. Livingston SE, Simonetti JP, Bulkow LR et al. Clearance of hepatitis B e antigen in patients with chronic hepatitis B and genotypes A, B, C, D, and F. Gastroenterology 133(5), 1452–1457 (2007).
    • 109. Wong GL, Chan HL, Yiu KK et al. Meta-analysis: The association of hepatitis B virus genotypes and hepatocellular carcinoma. Aliment. Pharmacol. Ther. 37(5), 517–526 (2013).
    • 110. Li JS, Tong SP, Wen YM, Vitvitski L, Zhang Q, Trépo C. Hepatitis B virus genotype A rarely circulates as an HBe-minus mutant: possible contribution of a single nucleotide in the precore region. J. Virol. 67(9), 5402–5410 (1993).
    • 111. Tong S, Li J, Wands JR, Wen YM. Hepatitis B virus genetic variants: biological properties and clinical implications. Emerg. Microbes. Infect. 2(3), e10 (2013). • Discusses the impact of viral genotypes and mutations/deletions in the pre-core, core promoter, pre-S and S gene on the establishment of chronic infection, development of FH and liver cancer.
    • 112. Kato H, Orito E, Gish RG et al. Hepatitis B e antigen in sera from individuals infected with hepatitis B virus of genotype G. Hepatology 35(4), 922–929 (2002).
    • 113. Kao JH. Molecular epidemiology of hepatitis B virus. Korean. J. Intern. Med. 26(3), 255–261 (2011).
    • 114. Nagasaki F, Ueno Y, Niitsuma H et al. Analysis of the entire nucleotide sequence of hepatitis B causing consecutive cases of fatal fulminant hepatitis in Miyagi Prefecture Japan. J. Med. Virol. 80(6), 967–973 (2008).
    • 115. Karin K-L, Myhre E, Blackberg J. Clinical and serological variation between patients infected with different hepatitis B virus genotypes. J. Clin. Microbiol. 42(12), 5837–5841 (2004).
    • 116. Garfein RS, Bower WA, Loney CM et al. Factors associated with fulminant liver failure during an outbreak among injection drug users with acute hepatitis B. Hepatology. 40(4), 865–873 (2004).
    • 117. Wai CT, Fontana RJ, Polson J et al. Clinical outcome and virological characteristics of hepatitis B-related acute liver failure in the United States. J. Viral. Hepat. 12(2), 192–198 (2005).
    • 118. Chook JB, Ngeow YF, Tee KK, Peh SC, Mohamed R. Novel genetic variants of hepatitis B virus in fulminant hepatitis. J. Pathog. 2017, 1231204 (2017). • Identifies six HBV variants that are highly predictive and specific for the identification of patients at risk for FH.
    • 119. Lampertico P, Maini M, Papatheodoridis G. Optimal management of hepatitis B virus infection – EASL Special Conference. J. Hepatol. 63(5), 1238–1253 (2015).
    • 120. European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 67(2), 370–398 (2017).