We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An overview of chikungunya virus molecular biology, epidemiology, pathogenesis, treatment and prevention strategies

    Anam Javaid

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    ,
    Aroosa Ijaz

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    ,
    Usman Ali Ashfaq

    *Author for correspondence:

    E-mail Address: ashfaqua@gcuf.edu.pk

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    ,
    Maham Arshad

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    ,
    Shakeel Irshad

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    &
    Saira Saif

    Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan

    Published Online:https://doi.org/10.2217/fvl-2019-0166

    The chikungunya virus (CHIKV) causes a devastating musculoskeletal inflammatory disease with symptoms of headache, rash, polyarthralgia, fever and myalgia. CHIKV has appeared intermittently around the world and in different ecological zones of Pakistan. Aedes mosquito species are the main vectors of CHIKV transmission and cause high disease rates in the urban transmission cycle. Even though the CHIKV is responsible for many cases of disease, no authorized antibodies or antiviral treatments are available, and prevention is the primary countermeasure. This review describes an update on CHIKV molecular biology, replication cycle, epidemiology, ecological factors, clinical manifestations and treatment and suggests a way forward to control and prevent this infection strategically in the future.

    References

    • 1. Caglioti C, Lalle E, Castilletti C et al. Chikungunya virus infection: an overview. New Microbiol. 36(3), 211–227 (2013).
    • 2. Abed DA, Goldstein M, Albanyan H et al. Discovery of direct inhibitors of Keap1–Nrf2 protein–protein interaction as potential therapeutic and preventive agents. Acta. Pharma. Sin. B. 5(4), 285–299 (2015).
    • 3. Khan AH, Morita K, del Carmen Parquet M et al. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 83(12), 3075–3084 (2002).
    • 4. Vasiljeva L, Merits A, Golubtsov A et al. Regulation of the sequential processing of Semliki Forest virus replicase polyprotein. J. Bio. Chem. 278(43), 41636–41645 (2003).
    • 5. Lampio A, Kilpeläinen I, Pesonen S et al. Membrane binding mechanism of an RNA virus-capping enzyme. J. Biol. Chem. 275(48), 37853–37859 (2000).
    • 6. Mi S, Stollar V. Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virol. J. 184(1), 423–427 (1991).
    • 7. Ahola T, Kääriäinen L. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. PNAS. 92(2), 507–511 (1995).
    • 8. Hardy WR, Strauss JH. Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J. Virol. 63(11), 4653–4664 (1989).
    • 9. Vasiljeva L, Valmu L, Kääriäinen L, Merits A. Site-specific protease activity of the carboxyl-terminal domain of Semliki Forest virus replicase protein nsP2. J. Biol. Chem. 276(33), 30786–30793 (2001).
    • 10. Malet H, Coutard B, Jamal S et al. The crystal structures of chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J. Virol. 83(13), 6534–6545 (2009).
    • 11. Garoff H, Frischauf AM, Simons K et al. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288(5788), 236 (1980).
    • 12. Boggs WM, Hahn CS, Strauss EG et al. Low pH-dependent Sindbis virus-induced fusion of BHK cells: differences between strains correlate with amino acid changes in the E1 glycoprotein. Virology 169(2), 485–488 (1989).
    • 13. Omar A, Koblet H. Semliki Forest virus particles containing only the E1 envelope glycoprotein are infectious and can induce cell-cell fusion. Virology 166(1), 17–23 (1988).
    • 14. Kielian M, Helenius A. pH-induced alterations in the fusogenic spike protein of Semliki Forest virus. J. Cell. Bio. 101(6), 2284–2291 (1985).
    • 15. Sanz MA, Rejas MT, Carrasco L. Individual expression of Sindbis virus glycoproteins. E1 alone promotes cell fusion. Virology 305(2), 463–472 (2003).
    • 16. Justman J, Klimjack MR, Kielian M. Role of spike protein conformational changes in a fusion of Semliki Forest virus. J. virol. 67(12), 7597–7607 (1993).
    • 17. Wahlberg JM, Bron R, Wilschut J, Garoff H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol. 66(12), 7309–7318 (1992).
    • 18. Halstead SB. The reappearance of chikungunya, formerly called dengue, in the Americas. Emerg. Infect. Dis. 21(4), 557 (2015).
    • 19. Carey DE. Chikungunya and dengue: a case of mistaken identity? J. His. Med. Allied Sci. 26(3), 243–262 (1971).
    • 20. Sabin A. The dengue group of viruses and its family relationships. Bacteriol. Rev. 14(3), 225–232 (1950).
    • 21. Halstead SB, Scanlon JE, Umpaivit P, Udomsakdi S. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. Am. J. Trop. Med. Hyg. 18(6), 997–1021 (1969).
    • 22. Halstead Sá, Nimmannitya S, Cohen S. Observations related to the pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. YJBM 42(5), 311 (1970).
    • 23. Myers RM, Carey DE. Concurrent isolation from a patient of two arboviruses, chikungunya and dengue type 2. Science. 157(3794), 1307–1308 (1967).
    • 24. Bhatt S, Gething PW, Brady OJ et al. The global distribution and burden of dengue. Nature 496(7446), 504 (2013).
    • 25. Kyle JL, Harris E. Global spread and persistence of dengue. Annu. Rev. Microbiol. 62, 71–92 (2008).
    • 26. Devi CS, Modi MA, Unnikrishnan U, Mohanasrinivasan V. A review on chikungunya and suggesting a hypothesis of nano-based drug delivery. Biosci. Biotechnol. Res. Asia. 11(1), 155–158 (2014).
    • 27. Simon F, Javelle E, Oliver M et al. Chikungunya virus infection. Curr. Infect. Dis.Rep. 13(3), 218 (2011).
    • 28. Lambrechts L. Quantitative genetics of Aedes aegypti vector competence for dengue viruses: towards a new paradigm? Trends. Parasitol. 27(3), 111–114 (2011).
    • 29. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathol. 3(12), e201 (2007).
    • 30. Cao-Lormeau VM, Musso D. Emerging arboviruses in the Pacific. Lancet 384(9954), 1571–1572 (2014).
    • 31. Musso D, Nilles E, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin. Microbiol. Infect. 20(10), O595–O596 (2014).
    • 32. Musso D, Gubler DJ. Zika virus: following the path of dengue and chikungunya? Lancet 386(9990), 243–244 (2015).
    • 33. Nhan T, Musso D. The burden of chikungunya in the Pacific. Clin. Microbiol. Infect. 21(6), e47–48 (2015).
    • 34. Lanciotti RS, Valadere AM. Transcontinental movement of Asian genotype chikungunya virus. Emerg. Infect. Dis. 20(8), 1400 (2014).
    • 35. Villero-Wolf Y, Mattar S, Puerta-González A et al. Genomic epidemiology of chikungunya virus in Colombia reveals genetic variability of strains and multiple geographic introductions in outbreak, 2014. Sc. Rep. 9(1), 1–11 (2019).
    • 36. Badar N, Salman M, Ansari J et al. Epidemiological trend of chikungunya outbreak in Pakistan: 2016–2018. PLoS. Neg. Trop. Dis. 13(4), e0007118 (2019).
    • 37. Darwish MA, Hoogstraal H, Roberts TJ et al. A sero-epidemiological survey for certain arboviruses (Togaviridae) in Pakistan. Trans. R. Soc. Trop. Med. Hyg. 77(4), 442–445 (1983).
    • 38. Fahad S, Hussain S, Bano A et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22(7), 4907–4921 (2015).
    • 39. Wazir MS, Mehmood S, Ahmed A, Jadoon HR. Awareness among barbers about health hazards associated with their profession. J. Ayub. Med. Coll. Abbottabad. 20(2), 35–38 (2008).
    • 40. Aamir UB, Badar N, Salman M et al. Outbreaks of chikungunya in Pakistan. Lancet. Infect. Dis. 17(5), 483 (2017).
    • 41. Rauf M, Manzoor S, Mehmood A, Bhatti S. Outbreak of chikungunya in Pakistan. Lancet. Infect. Dis. 17(3), 258 (2017).
    • 42. Mallhi TH, Khan YH, Khan AH et al. Commentary: outbreak of chikungunya in Pakistan. Front. Public. Health. 5, 261 (2017).
    • 43. Weaver SC, Forrester NL. Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Res. 120, 32–39 (2015).
    • 44. Volk SM, Chen R, Tsetsarkin KA et al. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 84(13), 6497–6504 (2010).
    • 45. Solignat M, Gay B, Higgs S et al. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2), 183–197 (2009).
    • 46. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am. J. Trop. Med. Hyg. 60(2), 281–286 (1999).
    • 47. Reiter P. Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector-Borne Zoonotic Dis. 7(2), 261–273 (2007).
    • 48. Chretien JP, Anyamba A, Bedno SA et al. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76(3), 405–407 (2007).
    • 49. Kraemer MU, Sinka ME, Duda KA et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data. 2, 150035 (2015).
    • 50. Paupy C, Delatte H, Bagny L et al. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb. Infect. 11(14–15), 1177–1185 (2009).
    • 51. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends. Parasitol. 29(9), 460–468 (2013).
    • 52. Savage HM, Aggarwal D, Apperson CS et al. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector-Borne Zoonotic Dis. 7(3), 365–386 (2007).
    • 53. Ledermann JP, Guillaumot L, Yug L et al. Aedes hensilli as a potential vector of chikungunya and Zika viruses. PLoS Neg. Trop. Dis. 8(10), e3188 (2014).
    • 54. Wiwanitkit V. Dengue fever: diagnosis and treatment. Exp. Rev. Anti-Infect. 8(7), 841–845 (2010).
    • 55. Goupil BA, Mores CN. A review of chikungunya virus-induced arthralgia: clinical manifestations, therapeutics, and pathogenesis. Open Rheumatol. J. 10, 129 (2016).
    • 56. Chia PY, Ng MML, Chu JJH. Chikungunya fever: a review of a reemerging mosquito-borne infectious disease and the current status. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badajoz, Spain, 597–606 (2010).
    • 57. Mohan A. Chikungunya fever: clinical manifestations & management. Indian J. Med. Res. 124(5), 471 (2006).
    • 58. Simon F, Savini H, Parola P. Chikungunya: a paradigm of emergence and globalization of vector-borne diseases. Med. Clin. N. Am. 92(6), 1323–1343 (2008).
    • 59. Bandyopadhyay D, Ghosh SK. Mucocutaneous features of chikungunya fever: a study from an outbreak in West Bengal, India. Int. J. Dermatol. 47(11), 1148–1152 (2008).
    • 60. Powers AM, Logue CH. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88(9), 2363–2377 (2007).
    • 61. Inamadar AC, Palit A, Sampagavi V et al. Cutaneous manifestations of chikungunya fever: observations made during a recent outbreak in south India. Int. J. Dermatol. 47(2), 154–159 (2008).
    • 62. Michault A, Staikowsky F. Chikungunya: first steps toward specific treatment and prophylaxis. J. Infect. Dis. 200(4), 489–491 (2009).
    • 63. Mohan A, Kiran D, Manohar IC, Kumar DP. Epidemiology, clinical manifestations, and diagnosis of chikungunya fever: lessons learned from the re-emerging epidemic. Indian J. Dermatol. 55(1), 54 (2010).
    • 64. Economopoulou A, Dominguez M, Helynck B et al. Atypical chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Reunion. Epidemiol. Infect. 137(4), 534–541 (2009).
    • 65. Obeyesekere I, Hermon Y. Myocarditis and cardiomyopathy after arbovirus infections (dengue and chikungunya fever). Br. Heart. J. 34(8), 821 (1972).
    • 66. Obeyesekere I, Hermon Y. Arbovirus heart disease: myocarditis and cardiomyopathy following dengue and chikungunya fever – a follow-up study. Am. Heart. J. 85(2), 186–194 (1973).
    • 67. Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 7(5), 319–327 (2007).
    • 68. Fourie E, Morrison J. Rheumatoid arthritic syndrome after chikungunya fever. S. Afr. Med. J. 56(4), 130–132 (1979).
    • 69. Kennedy A, Fleming J, Solomon L. Chikungunya viral arthropathy: a clinical description. J. rheumatol. 7(2), 231–236 (1980).
    • 70. Brighton S, Prozesky O, De La Harpe A. Chikungunya virus infection – a retrospective study of 107 cases. S. Afr. Med. J. 68(9), 313–315 (1983).
    • 71. Chalaem P, Chusri S, Fernandez S et al. Characterization of a chikungunya virus strain isolated from banked patients’ sera. Virol. J. 13(1), 150 (2016).
    • 72. Organization WH. World health statistics 2011. World Health Stat. WHO, Geneva, Switzerland (2011).
    • 73. Sharma S, Mohan A, Kadhiravan T. HIV-TB co-infection: epidemiology, diagnosis & management. Indian J. Med. Res. 121(4), 550–567 (2005).
    • 74. Staples JE, Breiman RF, Powers AM. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 49(6), 942–948 (2009).
    • 75. Alberts B, Johnson A, Lewis J et al. MBOC6 Custom Textbook – University of Toronto - BIO230H. Mol. Biol. Cell. (2015).
    • 76. WHO, UNICEF. Towards Universal Access: Scaling Up Priority HIV/AIDS Interventions in the Health Sector. (2009).
    • 77. Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans. R. Soc. Trop. Med. Hyg. 49(1), 28–32 (1955).
    • 78. Brighton S. Chloroquine phosphate treatment of chronic chikungunya arthritis. An open pilot study. S. Afr. Med. J. 66(6), 217–218 (1984).
    • 79. Lamballerie XD, Boisson V, Reynier JC et al. On chikungunya acute infection and chloroquine treatment. Vector-Borne Zoonotic Dis. 8(6), 837–840 (2008).
    • 80. Sebastian L, Desai A, Yogeeswari P et al. Combination of N-methylisatin-β-thiosemicarbazone derivative (SCH16) with ribavirin and mycophenolic acid potentiates the anti-viral activity of SCH16 against Japanese encephalitis virus in vitro. Lett. Appl. Microbiol. 55(3), 234–239 (2012).
    • 81. Dalmau J, Gleichman AJ, Hughes EG et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 7(12), 1091–1098 (2008).
    • 82. Collins HL, Kaufmann SH. Prospects for better tuberculosis vaccines. Lancet. Infect. Dis. 1(1), 21–28 (2001).
    • 83. Salazar-González JA, Angulo C, Rosales-Mendoza S. Chikungunya virus vaccines: current strategies and prospects for developing plant-made vaccines. Vaccine. 33(31), 3650–3658 (2015).
    • 84. Abbas T, Xu Z, Younus M et al. Seasonality in hospital admissions of Crimean–Congo hemorrhagic fever and its dependence on ambient temperature – empirical evidence from Pakistan. Int. J. Biometeorol. 61(11), 1893–1897 (2017).
    • 85. Mallhi T, Khan Y, Khan A et al. First chikungunya outbreak in Pakistan: a trail of viral attacks. New Microbes New Infect. 19, 13–14 (2017).
    • 86. Guzman MG, Halstead SB, Artsob H et al. Dengue: a continuing global threat. Nat. Rev. Microbiol. 8(Suppl. 12), S7 (2010).
    • 87. Sherin M, Jacobs V, Philipp R. Mathematics Teacher Noticing: Seeing through Teachers’ Eyes. Routledge, NY, USA (2011).
    • 88. Qureshi JA, Notta N, Salahuddin N et al. An epidemic of Dengue fever in Karachi – associated clinical manifestations. JPMA. J. Pak. Med. Assoc. 47(7), 178–181 (1997).
    • 89. Liebeskind DS, Sanossian N, Yong WH et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke. 42(5), 1237–1243 (2011).
    • 90. Bennett KL, Gómez-Martínez C, Chin Y et al. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci. Rep. 9(1), 1–12 (2019).
    • 91. Meertens L, Hafirassou ML, Couderc T et al. FHL1 is a major host factor for chikungunya virus infection. Nature. 574(7777), 259–263 (2019).