We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Effect of exogenous expression of IFN-γ on the new world alphavirus replication and infection

    Josh QH Wu

    *Author for correspondence: Tel.: +403 544 4604; Fax: +403 544 3388;

    E-mail Address: josh.wu@drdc-rddc.gc.ca

    Bio Threat Defence Section, Defence Research & Development Canada; Suffield Research Centre; Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada

    ,
    Nicole D Barabé

    Bio Threat Defence Section, Defence Research & Development Canada; Suffield Research Centre; Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada

    &
    Damon Chau

    Bio Threat Defence Section, Defence Research & Development Canada; Suffield Research Centre; Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada

    Published Online:https://doi.org/10.2217/fvl-2019-0073

    Aim: IFN-γ plays an important role in control of the old world alphavirus infection. However, the role of IFN-γ in the infection by the new world alphaviruses is not well characterized. Materials & methods: Ad5-mIFN-γ, a recombinant, replication-deficient human adenovirus, was constructed to express mouse IFN-γ (mIFN-γ) and a mouse, lethal challenge model of the new world alphavirus western equine encephalitis virus (WEEV) was used. Results: A single-dose injection of Ad5-mIFN-γ produced a high level of mIFN-γ in mice. Cells inoculated with Ad5-mIFN-γ restricted the replication of WEEV. A single-dose injection of Ad5-mIFN-γ delayed the WEEV infection and extended the survival time in mice. Conclusion: IFN-γ restricts the WEEV infection.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Lin FC , Young HA . Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 25(4), 369–376 (2014).
    • 2. Schroder K , Hertzog PJ , Ravasi T , Hume DA . Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75(2), 163–189 (2004). • An overview covering the well-characterized responses of IFN-γ that alter macrophage function during infection.
    • 3. Peng T , Zhu J , Hwangbo Y , Corey L , Bumgarner RE . Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts. J. Virol. 82(4), 1934–1945 (2008).
    • 4. Sainz B Jr , Halford WP . Alpha/beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J. Virol. 76(22), 11541–11550 (2002).
    • 5. Shakya AK , O’Callaghan DJ , Kim SK . Interferon gamma inhibits varicella-zoster virus replication in a cell line-dependent manner. J. Virol. 93(12), 1–16 (2019).
    • 6. Frese M , Schwarzle V , Barth K et al. Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35(3), 694–703 (2002).
    • 7. Moraes MP , de Los Santos T , Koster M et al. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. J. Virol. 81(13), 7124–7135 (2007).
    • 8. Obojes K , Andres O , Kim KS , Daubener W , Schneider-Schaulies J . Indoleamine 2,3-dioxygenase mediates cell type-specific anti-measles virus activity of gamma interferon. J. Virol. 79(12), 7768–7776 (2005).
    • 9. Lin YL , Huang YL , Ma SH et al. Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J. Virol. 71(7), 5227–5235 (1997).
    • 10. Der SD , Zhou A , Williams BR , Silverman RH . Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95(26), 15623–15628 (1998).
    • 11. Karupiah G , Xie QW , Buller RM , Nathan C , Duarte C , MacMicking JD . Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261(5127), 1445–1448 (1993). •• Demonstrated that the direct inhibition of viral replication by IFN-γ is through induction of nitric oxide synthase.
    • 12. Biron CA , Sen GC . Innate responses to viral infections. In: Fields Virology. Knipe DM Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 249–278 (2007).
    • 13. van Boxel-Dezaire AH , Stark GR . Cell type-specific signaling in response to interferon-gamma. Curr. Top. Microbiol. Immunol. 316, 119–154 (2007).
    • 14. Garmashova N , Gorchakov R , Volkova E , Paessler S , Frolova E , Frolov I . The old world and new world alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J. Virol. 81(5), 2472–2484 (2007).
    • 15. Griffin DE . Alphaviruses. In: Fields Virology. Knipe DM Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA, 1023–1067 (2007).
    • 16. Pratt WD , Hart MK , Reed DS , Steele KE . Alphaviruses. In: Biodefense: Research Methodology and Animal Models. Swearengen JR (Ed.). CRC Press, FL, USA, 181–206 (2006).
    • 17. Weaver SC , Ferro C , Barrera R , Boshell J , Navarro JC . Venezuelan equine encephalitis. Annu. Rev. Entomol. 49, 141–174 (2004).
    • 18. Rivas F , Diaz LA , Cardenas VM et al. Epidemic Venezuelan equine encephalitis in La Guajira, Colombia. J. Infect. Dis. 175(4), 828–832 (1997).
    • 19. Binder GK , Griffin DE . Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293(5528), 303–306 (2001). •• Showed first time that T cells used IFN-γ to clear the old world alphaviurs infection in the CNS.
    • 20. Burdeinick-Kerr R , Griffin DE . Gamma interferon-dependent, noncytolytic clearance of sindbis virus infection from neurons in vitro . J. Virol. 79(9), 5374–5385 (2005).
    • 21. Lee EY , Schultz KL , Griffin DE . Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS ONE 8(10), 1–13 (2013).
    • 22. Burdeinick-Kerr R , Wind J , Griffin DE . Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J. Virol. 81(11), 5628–5636 (2007).
    • 23. Baxter VK , Griffin DE . Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J. Gen. Virol. 97(11), 2908–2925 (2016).
    • 24. Ryman KD , Meier KC , Gardner CL , Adegboyega PA , Klimstra WB . Non-pathogenic Sindbis virus causes hemorrhagic fever in the absence of alpha/beta and gamma interferons. Virology 368(2), 273–285 (2007).
    • 25. Lee CS , Bishop ES , Zhang R et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 4(2), 43–63 (2017).
    • 26. Nagata LP , Hu WG , Parker M et al. Infectivity variation and genetic diversity among strains of Western equine encephalitis virus. J. Gen. Virol. 87(Pt 8), 2353–2361 (2006).
    • 27. Wu JQ , Barabe ND , Chau D et al. Complete protection of mice against a lethal dose challenge of western equine encephalitis virus after immunization with an adenovirus-vectored vaccine. Vaccine 25(22), 4368–4375 (2007).
    • 28. He TC , Zhou S , da Costa LT , Yu J , Kinzler KW , Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA 95(5), 2509–2514 (1998).
    • 29. Mahy BWJ , Kangro HO . Virology Methods Manual. Academic Press, CA, USA (1996).
    • 30. Wu JQ , Barabe ND , Huang YM , Rayner GA , Christopher ME , Schmaltz FL . Pre- and post-exposure protection against western equine encephalitis virus after single inoculation with adenovirus vector expressing interferon alpha. Virology 369(1), 206–213 (2007). • Demonstrated that adenovirus-mediated IFN-γ gene therapy has a potential to be used as a single-dose regime to prevent the lethal infection of a new world alphavirus.
    • 31. Steele KE , Twenhafel NA . Review paper: pathology of animal models of alphavirus encephalitis. Vet. Pathol. 47(5), 790–805 (2010). •• A review paper to summarize the current animal models for the new world alphaviruses.
    • 32. Chesler DA , Reiss CS . The role of IFN-γamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev. 13(6), 441–454 (2002). • A review on the mechanism of IFN-γ mediated antiviral effect on viral infections of the CNS.
    • 33. Komatsu T , Bi Z , Reiss CS . Interferon-gamma induced type I nitric oxide synthase activity inhibits viral replication in neurons. J. Neuroimmunol. 68(1–2), 101–108 (1996).
    • 34. Griffin DE . Immune responses to RNA-virus infections of the CNS. Nat. Rev. Immunol. 3(6), 493–502 (2003). • A detailed review on the roles of cytotoxic T cells, antibodies and cytokines in the clearance of viral infection from neurons, glial cells and meningeal cells.
    • 35. Grieder FB , Vogel SN . Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology 257(1), 106–118 (1999).
    • 36. Schijns VE , Van der Neut R , Haagmans BL , Bar DR , Schellekens H , Horzinek MC . Tumour necrosis factor-alpha, interferon-gamma and interferon-beta exert antiviral activity in nervous tissue cells. J. Gen. Virol. 72(Pt 4), 809–815 (1991).
    • 37. Zhang Y , Burke CW , Ryman KD , Klimstra WB . Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81(20), 11246–11255 (2007). • Demonstrated that several interferon-stimulated proteins are responsible for the antiviral effect of interferons against the alphaviruses.
    • 38. Aguilar PV , Adams AP , Wang E et al. Structural and nonstructural protein genome regions of eastern equine encephalitis virus are determinants of interferon sensitivity and murine virulence. J. Virol. 82(10), 4920–4930 (2008).
    • 39. Alevizatos AC , McKinney RW , Feigin RD . Live, attenuated Venezuelan equine encephalomyelitis virus vaccine. I. Clinical effects in man. Am. J. Trop. Med. Hyg. 16(6), 762–768 (1967).
    • 40. White LJ , Wang JG , Davis NL , Johnston RE . Role of alpha/beta interferon in Venezuelan equine encephalitis virus pathogenesis: effect of an attenuating mutation in the 5´ untranslated region. J. Virol. 75(8), 3706–3718 (2001).
    • 41. Kulasegaran-Shylini R , Thiviyanathan V , Gorenstein DG , Frolov I . The 5´UTR-specific mutation in VEEV TC-83 genome has a strong effect on RNA replication and subgenomic RNA synthesis, but not on translation of the encoded proteins. Virology 387(1), 211–221 (2009).
    • 42. Mistchenko AS , Diez RA , Falcoff R . Recombinant human interferon-gamma inhibits adenovirus multiplication without modifying viral penetration. J. Gen. Virol. 68(Pt 10), 2675–2679 (1987).
    • 43. Mistchenko AS , Falcoff R . Recombinant human interferon-gamma inhibits adenovirus multiplication in vitro . J. Gen. Virol. 68(Pt 3), 941–944 (1987).
    • 44. Lemiale F , Kong WP , Akyurek LM et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J. Virol. 77(18), 10078–10087 (2003).
    • 45. Toyobuku H , Sai Y , Kagami T , Tamai I , Tsuji A . Delivery of peptide drugs to the brain by adenovirus-mediated heterologous expression of human oligopeptide transporter at the blood–brain barrier. J. Pharmacol. Exp. Ther. 305(1), 40–407 (2003).
    • 46. Tang Y , Han T , Everts M et al. Directing adenovirus across the blood–brain barrier via melanotransferrin (P97) transcytosis pathway in an in vitro model. Gene Ther. 14(6), 523–532 (2007).
    • 47. Yin J , Gardner CL , Burke CW , Ryman KD , Klimstra WB . Similarities and differences in antagonism of neuron alpha/beta interferon responses by Venezuelan equine encephalitis and Sindbis alphaviruses. J. Virol. 83(19), 10036–10047 (2009).