We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Molecular mechanism of resveratrol inhibition of Zika virus NS3 helicase: behind the scenes

    Nikita Devnarain

    Molecular Bio-computation & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa

    &
    Mahmoud ES Soliman

    *Author for correspondence: Tel.: +0312607413;

    E-mail Address: soliman@ukzn.ac.za

    Molecular Bio-computation & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa

    Published Online:https://doi.org/10.2217/fvl-2018-0170

    Aim: Zika virus (ZIKV) still poses a health risk to women and their babies without US FDA-approved vaccines or treatments. Experimentation has proved resveratrol inhibition of ZIKV NS3 helicase without specifying the molecular events during inhibition. Materials & methods: Herein, we leaped forward to study the molecular dynamics of the bound and unbound enzyme, identifying precise binding residues and interactions, and the enzyme's adaptation to support binding, since loop dynamics affect viral RNA replication. Results: Resveratrol stabilizes the P-loop and causes the RNA-binding loop to block the RNA-binding pocket for 200 ns, which is concurrent with experimental evidence that resveratrol binding significantly reduces ATP hydrolysis activity. Conclusion: This study illuminates the structural dynamics of ZIKV helicase and druglikeness of resveratrol, which will advance anti-ZIKV drug development.

    References

    • 1 Ghosh D. Zika virus – a global emergency. Curr. Sci. 114(4), 725 (2018).
    • 2 Dhama K, Karthik K, Tiwari R et al. Zika virus/Zika fever: a comprehensive update. J. Exp. Biol. Agric. Sci. 6(1), 1–31 (2018).
    • 3 Nandy A, Basak SC. The epidemic that shook the world – the Zika virus rampage. Explor. Res. Hypothesis Med. 2(3), 43–56 (2017).
    • 4 Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C. Zika: the origin and spread of a mosquito-borne virus. Bull. World Health Organ. 94(9), 675–686 (2016).
    • 5 Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. bioRxiv doi:https://doi.org/10.1101/172221 (2017) (Epub ahead of print).
    • 6 Jain R, Coloma J, García-Sastre A, Aggarwal AK. Structure of the NS3 helicase from Zika virus. Nat. Struct. Mol. Biol. 23(8), 752–754 (2016).
    • 7 Mishra PM, Uversky VN, Giri R. Molecular recognition features in Zika virus proteome. J. Mol. Biol. 430(16), 2372–2388 (2017).
    • 8 Wang A, Thurmond S, Islas L, Hui K, Hai R. Zika virus genome biology and molecular pathogenesis. Emerg. Microbes Infect. 6(3), e13 (2017).
    • 9 Tian H, Ji X, Yang X et al. The crystal structure of Zika virus helicase: basis for antiviral drug design. Protein Cell 7(6), 450–454 (2016).
    • 10 Tian H, Ji X, Yang X et al. Structural basis of Zika virus helicase in recognizing its substrates. Protein Cell 7(8), 562–570 (2016).
    • 11 Devnarain N, Soliman MES. A panoptic uncovering of the dynamical evolution of the Zika virus NS5 methyltransferase binding site loops – zeroing in on the molecular landscape. Chem. Biol. Drug Des. 92(5), 1838–1850 (2018).
    • 12 Pan A, Saw WG, Manimekalai MSS et al. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallogr. D Struct. Biol. 73(5), 402–419 (2017).
    • 13 Lee JH, Wendorff TJ, Berger JM. Resveratrol: a novel type of topoisomerase II inhibitor. J. Biol. Chem. 292(51), 21011–21022 (2017).
    • 14 Abba Y, Hassim H, Hamzah H, Noordin MM. Antiviral activity of resveratrol against human and animal viruses. Adv. Virol. 2015, 1–7 (2015).
    • 15 Saw WG, Pan A, Subramanian Manimekalai MS, Grüber G. Structural features of Zika virus non-structural proteins 3 and −5 and its individual domains in solution as well as insights into NS3 inhibition. Antiviral Res. 141(1), 73–90 (2017).
    • 16 Fatima K, Mathew S, Suhail M et al. Docking studies of Pakistani HCV NS3 helicase: a possible antiviral drug target. PLoS ONE 9(9), 1–12 (2014).
    • 17 Campagna M, Rivas C. Antiviral activity of resveratrol. Biochem. Soc. Trans. 38(1), 50–53 (2010).
    • 18 Hausenblas HA, Schoulda JA, Smoliga JM. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol. Nutr. Food Res. 59(1), 147–159 (2015).
    • 19 Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 174(12), 1633–1646 (2017).
    • 20 Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis. 1852(6), 1195–1201 (2015).
    • 21 Borriello A. Resveratrol in cancer prevention and treatment: focusing on molecular targets and mechanism of action. Proceedings 1(10), 976 (2017).
    • 22 Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 118(1), 148–158 (2015).
    • 23 Lei J, Hansen G, Nitsche C, Klein CD, Zhang L, Hilgenfeld R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353(6298), 503–505 (2016).
    • 24 Rose PW, Prlić A, Altunkaya A et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45(D1), D271–D281 (2016).
    • 25 Tian H, Ji X, Yang X et al. The crystal structure of Zika virus helicase: basis for antiviral drug design. Protein Cell 7(6), 450–454 (2016).
    • 26 Kim S, Thiessen PA, Bolton E et al. PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016).
    • 27 Yang Z, Lasker K, Schneidman-Duhovny D et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol. 179(3), 269–278 (2012).
    • 28 de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinforma. Chem. 9(1), 1–11 (2016).
    • 29 Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31(1), 445–461 (2010).
    • 30 Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev. 26(5), 531–568 (2006).
    • 31 Munir A, Azam S, Mehmood A. Structure-based pharmacophore modeling, virtual screening and molecular docking for the treatment of ESR1 mutations in breast cancer. Drug Des. Open Access 5(137), 1–10 (2016).
    • 32 Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular Docking: a powerful approach for structure-based drug discovery. Curr. Comput. Drug Des. 7(2), 146–157 (2011).
    • 33 Case DA, Cheatham TE, Darden T et al. The amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005).
    • 34 Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J. Chem. Theory Comput. 9(9), 3878–3888 (2013).
    • 35 Sprenger KG, Jaeger VW, Pfaendtner J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B 119(18), 5882–5895 (2015).
    • 36 Miner JJ, Cao B, Govero J et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165(5), 1081–1091 (2016).
    • 37 Wang J, Wang W, Kollman Pa, Case Da. Antechamber, an accessory software package for molecular mechanical calculations. J. Chem. Inf. Comput. Sci. 222(2), U403 (2001).
    • 38 Woods RJ, Chappelle R. Restrained electrostatic potential atomic partial charges for condensed-phase simulations of carbohydrates. Theochem 527(1), 149–156 (2000).
    • 39 Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10(5), 449–461 (2015).
    • 40 Vanommeslaeghe K, Guvench O, Mackerell AD. Molecular mechanics. Curr. Pharm. Des. 20(20), 3281–3292 (2014).
    • 41 Wang H, Guo C, Chen BZ, Ji M. Computational study on the drug resistance mechanism of HCV NS5B RNA-dependent RNA polymerase mutants V494I, V494A, M426A, and M423T to filibuvir. Antiviral Res. 113(1), 79–92 (2015).
    • 42 Cele FN, Ramesh M, Soliman MES. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents. Drug Des. Devel. Ther. 10, 1365–1377 (2016).
    • 43 Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).
    • 44 Devnarain N, Ramharack P, Soliman ME. Brain grants permission of access to Zika virus but denies entry to drugs: a molecular modeling perspective to infiltrate the boundary. RSC Adv. 7(75), 47416–47424 (2017).
    • 45 Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1(4), 337–341 (2004).