We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An overview of new biomolecular pathways in pathogen-related cancers

    Maria Lina Tornesello

    Molecular Biology & Viral Oncology, Istituto Nazionale Tumori ‘Fondazione G. Pascale’ – IRCCS, Napoli, Italy

    ,
    Luigi Buonaguro

    Molecular Biology & Viral Oncology, Istituto Nazionale Tumori ‘Fondazione G. Pascale’ – IRCCS, Napoli, Italy

    &
    Franco M Buonaguro

    *Author for correspondence:

    E-mail Address: fm.buonaguro@istitutotumori.na.it

    Molecular Biology & Viral Oncology, Istituto Nazionale Tumori ‘Fondazione G. Pascale’ – IRCCS, Napoli, Italy

    Published Online:https://doi.org/10.2217/fon.15.87

    ABSTRACT 

    Cancer molecular pathways are combinations of metabolic processes deregulated in neoplastic cells. Besides pathways specific to tissues from which cancers originate, common neoplastic traits are present among most tumors. Hanahan and Weinberg have described the most critical ‘hallmarks’ shared by many cancer types. In recent years, cancer stem cell specific properties and pathways have also been identified. Other altered pathways are peculiar of cancer type and cancer stage, even in different cancer stem cell types. In pathogen-related tumors, the alteration of inflammatory and immunologic response along with impairment of cell cycle control represents key molecular events of tumor progression. This article summarizes the recent discoveries of new altered pathways in cancer and their importance in cancer diagnosis and tailored therapies.

    Papers of special note have been highlighted as:• of interest; •• of considerable interest

    References

    • 1 Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 8(6), 519–530 (1927).•• This is the first report on common metabolic alteration in cancer consisting in the nonoxidative breakdown of glucose and the glycolytic anaerobic-catabolism of sugars decoupled from the oxidative mitochondrial breakdown of pyruvate.
    • 2 Lindau Nobel Laureate Meetings org. Otto Warburg Lecture – On the Primary Causes and on the Secondary Causes of Cancer. www.mediatheque.lindau-nobel.org
    • 3 Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 66(18), 8927–8930 (2006).
    • 4 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100(1), 57–70 (2000).•• The article describes the grouping of all cancer metabolic changes in six major pathways.
    • 5 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).•• The cancer hallmarks are revisited in light of new discoveries and more pathways, such as reprogramming of energy metabolism and evading immune destruction, are added to the list of cancer hallmarks.
    • 6 Tayer W. Appendix I. In: Celsus Cornelius A. De Medicina. Latin Transcription by F. Marx, Teubner edition1915; English translation by W. G. Spencer, Loeb edition 1938. Loeb Classical Library edition, 1935 (2002). http://penelope.uchicago.edu
    • 7 Hippocrates of Cos. Book VI, 38. In: Aphorisms (Greek and Latin bilingual edition). Foes A (Eds.). Bibliothèque numérique Medic@: MS 595 – BIUM 2. bibliothèques interuniversitaires de médecine (BIUM), Paris, published apud Andreae Wecheli heredes, Claudium Marnium et Joannem Aubrium, Francofurti, (1595). www2.biusante.parisdescartes.fr
    • 8 Hajdu SI. A note from history: landmarks in history of cancer, part 1. Cancer 117(5), 1097–1102 (2011).
    • 9 Celsus Cornelius A. Book V 28, 2A-C. In: De Medicina. Latin Transcription by F. Marx, Teubner edition1915; English translation by W. G. Spencer, Loeb edition 1938. Loeb Classical Library edition, 1935, (2002). http://penelope.uchicago.edu
    • 10 Galenus Claudius of Pergamon. De Methodo Medendi, Liber XIV. In: Claudii Galeni Opera Omnia (Vol. X). Kühn KG (Ed.). Car. Cnoblochii, Leipzig, 945–1026 (1825). www2.biusante.parisdescartes.fr.
    • 11 Galenus Claudius of Pergamon. De Tumoribus praeter naturam, Cap. XII. In: Claudii Galeni Opera Omnia (Vol. VII). Kühn KG (Ed.). Car. Cnoblochii, Leipzig, 705–732 (1824). www2.biusante.parisdescartes.fr.
    • 12 Adriani Ravesteini. Lexicon Medicum Graeco-Latinum a Batholomeo Castello Messanense inchoatum. Art. Med. Doct. ex Hippocr. Galen. Avicenn. atque aliorum celeberrimorum Medicorum Monumnetis. Arnoldum Leers, Roterodami (1665). https://books.google.it.
    • 13 TCGA. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008).
    • 14 TCGA. Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011).
    • 15 TCGA. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517), 202–209 (2014).
    • 16 TCGA. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417), 519–525 (2012).
    • 17 TCGA. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507(7492), 315–322 (2014).
    • 18 TCGA. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456), 43–49 (2013).
    • 19 TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012).
    • 20 TCGA. Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012).
    • 21 Martinez E, Yoshihara K, Kim H, Mills GM, Trevino V, Verhaak RG. Comparison of gene expression patterns across 12 tumor types identifies a cancer supercluster characterized by TP53 mutations and cell cycle defects. Oncogene doi:10.1038/onc.2014.216 (2014) (Epub ahead of print).• Describes common transcriptional footprints across cancer types and highlights that tumor subtypes are commonly unified by a limited number of molecular themes.
    • 22 Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010).
    • 23 Hu X, Stern HM, Ge L et al. Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol. Cancer Res. 7(4), 511–522 (2009).
    • 24 Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25(43), 5846–5853 (2006).
    • 25 Foulkes WD, Stefansson IM, Chappuis PO et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst. 95(19), 1482–1485 (2003).
    • 26 Hernando E, Nahle Z, Juan G et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430(7001), 797–802 (2004).
    • 27 Puc J, Keniry M, Li HS et al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7(2), 193–204 (2005).
    • 28 Shen WH, Balajee AS, Wang J et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1), 157–170 (2007).
    • 29 Rouzier R, Perou CM, Symmans WF et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11(16), 5678–5685 (2005).
    • 30 Bosco EE, Wang Y, Xu H et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest. 117(1), 218–228 (2007).
    • 31 McCabe N, Turner NC, Lord CJ et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66(16), 8109–8115 (2006).
    • 32 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006).
    • 33 Chiou SH, Wang ML, Chou YT et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial–mesenchymal transdifferentiation. Cancer Res. 70(24), 10433–10444 (2010).
    • 34 Lopez-Bertoni H, Lal B, Li A et al. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene doi:10.1038/onc.2014.334 (2014) (Epub ahead of print).
    • 35 Cao L, Zhou Y, Zhai B et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 11, 71 (2011).
    • 36 Bareiss PM, Paczulla A, Wang H et al. SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res. 73(17), 5544–5555 (2013).
    • 37 Ma L, Lai D, Liu T, Cheng W, Guo L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim. Biophys. Sin.(Shanghai) 42(9), 593–602 (2010).
    • 38 Goldie SJ, Mulder KW, Tan DW, Lyons SK, Sims AH, Watt FM. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 72(13), 3424–3436 (2012).
    • 39 Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl Acad. Sci. USA 100(Suppl. 1), 11842–11849 (2003).
    • 40 Mani SA, Guo W, Liao MJ et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4), 704–715 (2008).
    • 41 Biddle A, Liang X, Gammon L et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71(15), 5317–5326 (2011).
    • 42 Levine AJ. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384(2), 285–293 (2009).• Describes a common transforming mechanism of small DNA viruses consisting in the alteration of p53-related pathways.
    • 43 Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat. 37(6), 319–324 (2005).
    • 44 Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319(5866), 1096–1100 (2008).
    • 45 Peng R, Gordadze AV, Fuentes Panana EM et al. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J. Virol. 74(1), 379–389 (2000).
    • 46 Waltzer L, Perricaudet M, Sergeant A, Manet E. Epstein–Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J. Virol. 70(9), 5909–5915 (1996).
    • 47 Subramanian C, Hasan S, Rowe M, Hottiger M, Orre R, Robertson ES. Epstein–Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J. Virol. 76(10), 4699–4708 (2002).
    • 48 Kaye KM, Izumi KM, Kieff E. Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl Acad. Sci USA 90(19), 9150–9154 (1993).
    • 49 Ikeda O, Sekine Y, Mizushima A et al. BS69 negatively regulates the canonical NF-kappaB activation induced by Epstein–Barr virus-derived LMP1. FEBS Lett. 583(10), 1567–1574 (2009).
    • 50 Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9(3), 405–411 (1998).
    • 51 Swanson-Mungerson M, Bultema R, Longnecker R. Epstein–Barr virus LMP2A imposes sensitivity to apoptosis. J. Gen. Virol. 91(Pt 9), 2197–2202 (2010).
    • 52 Friborg J Jr., Kong W, Hottiger MO, Nabel GJ. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402(6764), 889–894 (1999).
    • 53 Cai QL, Knight JS, Verma SC, Zald P, Robertson ES. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog. 2(10), e116 (2006).
    • 54 An J, Sun Y, Sun R, Rettig MB. Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene 22(22), 3371–3385 (2003).
    • 55 Guasparri I, Wu H, Cesarman E. The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep. 7(1), 114–119 (2006).
    • 56 Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl Acad. Sci. USA 91(6), 2230–2234 (1994).
    • 57 Jung JK, Arora P, Pagano JS, Jang KL. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res. 67(12), 5771–5778 (2007).
    • 58 Kuo TC, Chao CC. Hepatitis B virus X protein prevents apoptosis of hepatocellular carcinoma cells by upregulating SATB1 and HURP expression. Biochem. Pharmacol. 80(7), 1093–1102 (2010).
    • 59 Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96(26), 14973–14977 (1999).
    • 60 Tellinghuisen TL, Rice CM. Interaction between hepatitis C virus proteins and host cell factors. Curr. Opin. Microbiol. 5(4), 419–427 (2002).
    • 61 Lu L, Wei L, Peng G et al. NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology 371(1), 61–70 (2008).
    • 62 Gong GZ, Jiang YF, He Y, Lai LY, Zhu YH, Su XS. HCV NS5A abrogates p53 protein function by interfering with p53-DNA binding. World J. Gastroenterol. 10(15), 2223–2227 (2004).
    • 63 Schmitz U, Tan SL. NS5A – from obscurity to new target for HCV therapy. Recent Pat Antiinfect. Drug Discov. 3(2), 77–92 (2008).
    • 64 Kim YM, Geiger TR, Egan DI, Sharma N, Nyborg JK. The HTLV-1 tax protein cooperates with phosphorylated CREB, TORC2 and p300 to activate CRE-dependent cyclin D1 transcription. Oncogene 29(14), 2142–2152 (2010).
    • 65 Gallo RC. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene 24(39), 5926–5930 (2005).
    • 66 Buti L, Spooner E, Van d V, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc. Natl Acad. Sci. USA 108(22), 9238–9243 (2011).
    • 67 Nesic D, Buti L, Lu X, Stebbins CE. Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proc. Natl Acad. Sci. USA 111(4), 1562–1567 (2014).
    • 68 Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol. Ther. 10(10), 961–978 (2010).
    • 69 Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6), 1129–1136 (1990).
    • 70 Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893), 934–937 (1989).
    • 71 Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277(4), 2923–2930 (2002).
    • 72 Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 11(6), 375–388 (2011).
    • 73 Tornesello M, Annunziata C, Buonaguro L, Losito S, Greggi S, Buonaguro FM. TP53 and PIK3CA gene mutations in adenocarcinoma, squamous cell carcinoma and high-grade intraepithelial neoplasia of the cervix. J. Transl. Med. 12(1), 255 (2014).
    • 74 Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380(6569), 79–82 (1996).
    • 75 Veldman T, Horikawa I, Barrett JC, Schlegel R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75(9), 4467–4472 (2001).
    • 76 Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol. 75(12), 5559–5566 (2001).
    • 77 Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl Acad. Sci. USA 100(14), 8211–8216 (2003).
    • 78 Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell 127(2), 265–275 (2006).
    • 79 Jarrard DF, Sarkar S, Shi Y et al. p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59(12), 2957–2964 (1999).
    • 80 Darbro BW. Mechanisms of human epithelial cell immortalization and p16NK4a induced telomere-independent sencescence [PhD thesis]. University of Iowa, Iowa City, IA, USA (2007). http://ir.uiowa.edu/etd/183.
    • 81 Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol. 16(3), 1197–1206 (1998).
    • 82 Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576(1–2), 22–38 (2005).
    • 83 Perez-Sayans M, Suarez-Penaranda JM, Padin-Iruegas ME et al. The loss of p16 expression worsens the prognosis of OSCC. Appl. Immunohistochem. Mol. Morphol. (2015).
    • 84 Weinberger PM, Yu Z, Haffty BG et al. Molecular classification identifies a subset of human papillomavirus – associated oropharyngeal cancers with favorable prognosis. J. Clin. Oncol. 24(5), 736–747 (2006).
    • 85 Tornesello ML, Perri F, Buonaguro L, Ionna F, Buonaguro FM, Caponigro F. HPV-related oropharyngeal cancers: from pathogenesis to new therapeutic approaches. Cancer Lett. 351(2), 198–205 (2014).
    • 86 Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 21(1), 49–54 (2007).
    • 87 Tornesello ML, Buonaguro L, Giorgi-Rossi P, Buonaguro FM. Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer. Biomed. Res. Int. 2013, 519619 (2013).
    • 88 Li J, Muscarella P, Joo SH et al. Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A). Biochemistry 44(40), 13246–13256 (2005).
    • 89 Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50(25), 5566–5582 (2011).
    • 90 de Martel C, Ferlay J, Franceschi S et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13(6), 607–615 (2012).
    • 91 Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, Buonaguro FM. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 102(2), 74–83 (2013).
    • 92 Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host. Microbe 15(3), 266–282 (2014).•• The article describes the pathogenesis of human oncogenic viruses and their effect on different cancer hallmarks.
    • 93 Bolukbas C, Bolukbas FF, Horoz M, Aslan M, Celik H, Erel O. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect. Dis. 5, 95 (2005).
    • 94 Fujita N, Sugimoto R, Ma N et al. Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J. Viral Hepat. 15(7), 498–507 (2008).
    • 95 Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J. Gastroenterol. Hepatol. 26(Suppl.1), 173–179 (2011).
    • 96 Lee YI, Hwang JM, Im JH et al. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J. Biol. Chem. 279(15), 15460–15471 (2004).
    • 97 Zemel R, Issachar A, Tur-Kaspa R. The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin. Liver Dis. 15(2), 261–26x (2011).
    • 98 Hu L, Chen L, Yang G et al. HBx sensitizes cells to oxidative stress-induced apoptosis by accelerating the loss of Mcl-1 protein via caspase-3 cascade. Mol. Cancer 10, 43 (2011).
    • 99 Sieghart W, Losert D, Strommer S et al. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J. Hepatol. 44(1), 151–157 (2006).
    • 100 Wang WL, London WT, Lega L, Feitelson MA. HBxAg in the liver from carrier patients with chronic hepatitis and cirrhosis. Hepatology 14(1), 29–37 (1991).
    • 101 Martin-Vilchez S, Lara-Pezzi E, Trapero-Marugan M, Moreno-Otero R, Sanz-Cameno P. The molecular and pathophysiological implications of hepatitis B X antigen in chronic hepatitis B virus infection. Rev. Med. Virol. 21(5), 315–329 (2011).
    • 102 Jin YM, Yun C, Park C, Wang HJ, Cho H. Expression of hepatitis B virus X protein is closely correlated with the high periportal inflammatory activity of liver diseases. J. Viral Hepat. 8(5), 322–330 (2001).
    • 103 Gong G, Waris G, Tanveer R, Siddiqui A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc. Natl Acad. Sci. USA 98(17), 9599–9604 (2001).
    • 104 Okuda M, Li K, Beard MR et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122(2), 366–375 (2002).
    • 105 Boudreau HE, Emerson SU, Korzeniowska A, Jendrysik MA, Leto TL. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J. Virol. 83(24), 12934–12946 (2009).
    • 106 de Mochel NS, Seronello S, Wang SH et al. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52(1), 47–59 (2010).
    • 107 Santos CX, Tanaka LY, Wosniak J, Laurindo FR. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox. Signal. 11(10), 2409–2427 (2009).
    • 108 Kumthip K, Chusri P, Jilg N et al. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J. Virol. 86(16), 8581–8591 (2012).
    • 109 Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J. Clin. Invest. 119(7), 1745–1754 (2009).
    • 110 Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127(5 Suppl. 1), S56-S61 (2004).
    • 111 Jeong SW, Jang JY, Chung RT. Hepatitis C virus and hepatocarcinogenesis. Clin. Mol. Hepatol. 18(4), 347–356 (2012).
    • 112 Ray RB, Meyer K, Ray R. Hepatitis C virus core protein promotes immortalization of primary human hepatocytes. Virology 271(1), 197–204 (2000).
    • 113 Peek RM Jr, Crabtree JE. Helicobacter infection and gastric neoplasia. J. Pathol. 208(2), 233–248 (2006).
    • 114 Ernst PB, Peura DA, Crowe SE. The translation of Helicobacter pylori basic research to patient care. Gastroenterology 130(1), 188–206 (2006).
    • 115 Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA 96(25), 14559–14564 (1999).
    • 116 Viala J, Chaput C, Boneca IG et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5(11), 1166–1174 (2004).
    • 117 Ding SZ, Zheng PY. Helicobacter pylori infection induced gastric cancer; advance in gastric stem cell research and the remaining challenges. Gut Pathog. 4(1), 18 (2012).
    • 118 Ding SZ, Fischer W, Kaparakis-Liaskos M et al. Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS ONE 5(4), e9875 (2010).
    • 119 Backert S, Naumann M. What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol. 18(11), 479–486 (2010).
    • 120 Lee IO, Kim JH, Choi YJ et al. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J. Biol. Chem. 285(21), 16042–16050 (2010).
    • 121 Jang BG, Kim WH. Molecular pathology of gastric carcinoma. Pathobiology 78(6), 302–310 (2011).
    • 122 O'Gorman A, Colleran A, Ryan A, Mann J, Egan LJ. Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299(1), G96–G105 (2010).
    • 123 Ohnishi N, Yuasa H, Tanaka S et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA 105(3), 1003–1008 (2008).
    • 124 Hayashi D, Tamura A, Tanaka H et al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology 142(2), 292–304 (2012).
    • 125 Marusawa H, Chiba T. Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis. Curr. Opin. Immunol. 22(4), 442–447 (2010).
    • 126 Huang FY, Chan AO, Rashid A, Wong DK, Cho CH, Yuen MF. Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1beta activation of nitric oxide production in gastric cancer cells. Cancer 118(20), 4969–4980 (2012).
    • 127 Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 59(1), 159–164 (1999).
    • 128 Deng N, Goh LK, Wang H et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61(5), 673–684 (2012).
    • 129 Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2(1), a001008 (2010).
    • 130 Murakami K, Fujioka T, Okimoto T et al. Analysis of p53 gene mutations in Helicobacter pylori-associated gastritis mucosa in endoscopic biopsy specimens. Scand. J. Gastroenterol. 34(5), 474–477 (1999).
    • 131 Piazzi G, Fini L, Selgrad M et al. Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer. Oncotarget. 2(12), 1291–1301 (2011).
    • 132 Tomita H, Takaishi S, Menheniott TR et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 140(3), 879–891 (2011).
    • 133 Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical–junctional complex by Helicobacter pylori CagA. Science 300(5624), 1430–1434 (2003).
    • 134 Saito Y, Murata-Kamiya N, Hirayama T, Ohba Y, Hatakeyama M. Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J. Exp. Med. 207(10), 2157–2174 (2010).
    • 135 Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl Acad. Sci. USA 102(45), 16339–16344 (2005).
    • 136 Bessede E, Staedel C, cuna Amador LA et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial–mesenchymal transition-like changes. Oncogene 33(32), 4123–4131 (2014).
    • 137 Serrano B, Alemany L, Tous S et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infect. Agent Cancer 7(1), 38 (2012).
    • 138 Buonaguro F, Tornesello M, Buonaguro L. The XIX century smallpox prevention in Naples and the risk of transmission of human blood-related pathogens. J. Transl. Med. 13(1), 33 (2015).
    • 139 Kowdley KV, Gordon SC, Reddy KR et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N. Engl. J. Med. 370(20), 1879–1888 (2014).
    • 140 Malfertheiner P, Megraud F, O'Morain CA et al. Management of Helicobacter pylori infection – the Maastricht IV/Florence Consensus Report. Gut 61(5), 646–664 (2012).
    • 141 Campistol JM, Schena FP. Kaposi's sarcoma in renal transplant recipients – the impact of proliferation signal inhibitors. Nephrol. Dial. Transplant. 22 Suppl 1, i17–i22 (2007).
    • 142 Calistri E, Tiribelli M, Battista M et al. Epstein–Barr virus reactivation in a patient treated with anti-thymocyte globulin for severe aplastic anemia. Am. J. Hematol. 81(5), 355–357 (2006).