We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment

    Claudia Palena

    * Author for correspondence

    Laboratory of Tumor Immunology & Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.

    ,
    Duane H Hamilton

    Laboratory of Tumor Immunology & Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA

    &
    Romaine I Fernando

    Laboratory of Tumor Immunology & Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA

    Published Online:https://doi.org/10.2217/fon.12.59

    The phenomenon of epithelial–mesenchymal transition (EMT) has gained attention in the field of cancer biology for its potential contribution to the progression of carcinomas. Tumor EMT is a phenotypic switch that promotes the acquisition of a fibroblastoid-like morphology by epithelial tumor cells, resulting in enhanced tumor cell motility and invasiveness, increased metastatic propensity and resistance to chemotherapy, radiation and certain small-molecule-targeted therapies. Tumor cells undergoing EMT are also known to increase the secretion of specific factors, including cytokines, chemokines and growth factors, which could play an important role in tumor progression. This review summarizes the current knowledge on the secretory properties of epithelial tumor cells that have undergone an EMT, with an emphasis on the potential role of the IL-8–IL-8 receptor axis on the induction and/or maintenance of tumor EMT and its ability to remodel the tumor microenvironment.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J. Clin. Invest.119(6),1420–1428 (2009).▪ A comprehensive review of the role of the epithelial–mesenchymal transition (EMT) in normal and pathological conditions.
    • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer9(4),265–273 (2009).
    • Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol.27,347–376 (2011).
    • Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer2(6),442–454 (2002).
    • Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J, Palena C. The T-box transcription factor brachyury promotes epithelial–mesenchymal transition in human tumor cells. J. Clin. Invest.120(2),533–544 (2010).▪ Describes the T-box transcription factor as a regulator of EMT in human carcinomas.
    • Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev.18(10),1131–1143 (2004).
    • Kurrey NK, Jalgaonkar SP, Joglekar AV et al. Snail and Slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells27(9),2059–2068 (2009).
    • Gupta PB, Onder TT, Jiang G et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell138(4),645–659 (2009).
    • Thomson S, Buck E, Petti F et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res.65(20),9455–9462 (2005).
    • 10  Guarino M, Rubino B, Ballabio G. The role of epithelial–mesenchymal transition in cancer pathology. Pathology39(3),305–318 (2007).
    • 11  Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin. Cancer Res.13(23),7003–7011 (2007).
    • 12  Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res.68(10),3645–3654 (2008).
    • 13  Sawada K, Mitra AK, Radjabi AR et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res.68(7),2329–2339 (2008).
    • 14  Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res.68(4),989–997 (2008).
    • 15  Mani SA, Guo W, Liao MJ et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell133(4),704–715 (2008).▪▪ First paper describing a link between tumor EMT and the acquisition of characteristics associated with cancer stem cells.
    • 16  Creighton CJ, Li X, Landis M et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA106(33),13820–13825 (2009).▪ Describes the association between cancer stem cells and tumor EMT in vivo.
    • 17  Wang Y, Ngo VN, Marani M et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene29(33),4658–4670 (2010).
    • 18  Sabbah M, Emami S, Redeuilh G et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist. Updat.11(4–5),123–151 (2008).
    • 19  Moustakas A, Heldin CH. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci.98(10),1512–1520 (2007).
    • 20  Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol.7(2),131–142 (2006).
    • 21  Nannuru KC, Singh RK. Tumor–stromal interactions in bone metastasis. Curr. Osteoporos Rep.8(2),105–113 (2010).
    • 22  Sansone P, Storci G, Tavolari S et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest.117(12),3988–4002 (2007).
    • 23  Mathias RA, Wang B, Ji H et al. Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial–mesenchymal transition. J. Proteome Res.8(6),2827–2837 (2009).
    • 24  Scheel C, Eaton EN, Li SH et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell145(6),926–940 (2011).
    • 25  Gregory PA, Bracken CP, Smith E et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Mol. Biol. Cell22(10),1686–1698 (2011).
    • 26  Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol.8(23),1243–1252 (1998).
    • 27  Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet.29(2),117–129 (2001).
    • 28  Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene24(37),5764–5774 (2005).
    • 29  Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell15(3),195–206 (2009).
    • 30  Jechlinger M, Grunert S, Tamir IH et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene22(46),7155–7169 (2003).
    • 31  Sullivan NJ, Sasser AK, Axel AE et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene28(33),2940–2947 (2009).
    • 32  Gonzalez-Moreno O, Lecanda J, Green JE et al. VEGF elicits epithelial–mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Exp. Cell Res.316(4),554–567 (2009).
    • 33  Kishimoto T. IL-6: from its discovery to clinical applications. Int. Immunol.22(5),347–352 (2010).
    • 34  Rose-John S, Waetzig GH, Scheller J, Grotzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther. Targets11(5),613–624 (2007).
    • 35  Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J.21(13),3763–3770 (2007).
    • 36  Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer6(10),764–775 (2006).
    • 37  Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl Acad. Sci. USA106(48),20318–20323 (2009).
    • 38  Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol.139(7),1861–1872 (1997).
    • 39  Przybylo JA, Radisky DC. Matrix metalloproteinase-induced epithelial–mesenchymal transition: tumor progression at Snail’s pace. Int. J. Biochem. Cell Biol.39(6),1082–1088 (2007).
    • 40  Illman SA, Lehti K, Keski-Oja J, Lohi J. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J. Cell Sci.119(Pt 18),3856–3865 (2006).
    • 41  Cano A, Perez-Moreno MA, Rodrigo I et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol.2(2),76–83 (2000).
    • 42  Blanco MJ, Moreno-Bueno G, Sarrio D et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene21(20),3241–3246 (2002).
    • 43  Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci.116(Pt 3),499–511 (2003).
    • 44  Shih JY, Tsai MF, Chang TH et al. Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin. Cancer Res.11(22),8070–8078 (2005).
    • 45  Yang J, Mani SA, Donaher JL et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117(7),927–939 (2004).
    • 46  Kwok WK, Ling MT, Lee TW et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res.65(12),5153–5162 (2005).
    • 47  Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature343(6259),617–622 (1990).
    • 48  Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial–mesenchymal transition of human carcinoma cells. Cancer Res.71(15),5296–5306 (2011).▪▪ First paper describing the ability of IL-8 signaling to induce and maintain brachyury-induced EMT in human breast carcinoma cell lines.
    • 49  Coppe JP, Patil CK, Rodier F et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol.6(12),2853–2868 (2008).
    • 50  Luboshits G, Shina S, Kaplan O et al. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res.59(18),4681–4687 (1999).
    • 51  Dannenmann C, Shabani N, Friese K, Jeschke U, Mylonas I, Bruning A. The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biol. Ther.7(9),1460–1467 (2008).
    • 52  Ancrile B, Lim KH, Counter CM. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev.21(14),1714–1719 (2007).
    • 53  Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J. Immunol.139(3),788–793 (1987).
    • 54  Skov L, Beurskens FJ, Zachariae CO et al. IL-8 as antibody therapeutic target in inflammatory diseases: reduction of clinical activity in palmoplantar pustulosis. J. Immunol.181(1),669–679 (2008).
    • 55  Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor. Immunology68(1),31–36 (1989).
    • 56  Desbaillets I, Diserens AC, Tribolet N, Hamou MF, Van Meir EG. Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J. Exp. Med.186(8),1201–1212 (1997).
    • 57  Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev.12(4),375–391 (2001).
    • 58  Stillie R, Farooq SM, Gordon JR, Stadnyk AW. The functional significance behind expressing two IL-8 receptor types on PMN. J. Leukoc. Biol.86(3),529–543 (2009).
    • 59  Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin. Cancer Res.14(21),6735–6741 (2008).
    • 60  Gabellini C, Trisciuoglio D, Desideri M et al. Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur. J. Cancer45(14),2618–2627 (2009).
    • 61  Bates RC, DeLeo MJ 3rd, Mercurio AM. The epithelial–mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp. Cell Res.299(2),315–324 (2004).
    • 62  Hwang WL, Yang MH, Tsai ML et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology141(1),279–291 (2011).
    • 63  Charafe-Jauffret E, Ginestier C, Iovino F et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res.69(4),1302–1313 (2009).▪▪ First paper describing the ability of IL-8 signaling to induce a cancer stem cell phenotype in human breast carcinoma cell lines.
    • 64  Ginestier C, Liu S, Diebel ME et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest.120(2),485–497 (2010).▪▪ Demonstrates the potential of treatment strategies targeting the IL-8–IL-8 receptor axis to target tumor cells with a cancer stem cell phenotype.
    • 65  Chang CJ, Chien Y, Lu KH et al. Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem. Biophys. Res. Commun.415(2),245–251 (2011).
    • 66  Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol.170(6),3369–3376 (2003).
    • 67  Yanagawa J, Walser TC, Zhu LX et al. Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin. Cancer Res.15(22),6820–6829 (2009).
    • 68  Mironchik Y, Winnard PT Jr, Vesuna F et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res.65(23),10801–10809 (2005).
    • 69  Ji H, Houghton AM, Mariani TJ et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene25(14),2105–2112 (2006).
    • 70  Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res.70(14),6071–6082 (2010).
    • 71  Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res.71(7),2411–2416 (2011).
    • 72  Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J. Immunol.151(5),2667–2675 (1993).
    • 73  De Larco JE, Wuertz BR, Rosner KA et al. A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am. J. Pathol.158(2),639–646 (2001).
    • 74  Maxwell PJ, Gallagher R, Seaton A et al. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene26(52),7333–7345 (2007).
    • 75  Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res.66(23),11271–11278 (2006).
    • 76  Bukholm IK, Nesland JM, Borresen-Dale AL. Re-expression of E-cadherin, alpha-catenin and beta-catenin, but not of gamma-catenin, in metastatic tissue from breast cancer patients [see comments]. J. Pathol.190(1),15–19 (2000).
    • 77  Mian BM, Dinney CP, Bermejo CE et al. Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin. Cancer Res.9(8),3167–3175 (2003).
    • 78  Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell6(5),447–458 (2004).
    • 79  Reka AK, Kurapati H, Narala VR et al. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial–mesenchymal transition. Mol. Cancer Ther.9(12),3221–3232 (2010).
    • 80  Palena C, Polev DE, Tsang KY et al. The human T-box mesodermal transcription factor brachyury is a candidate target for T-cell-mediated cancer immunotherapy. Clin. Cancer Res.13(8),2471–2478 (2007).▪ Describes the potential use of immunotherapy to target tumor cells undergoing EMT via cancer vaccine approaches against the T-box transcription factor brachyury.