We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
EditorialFree Access

Gene signatures of genomic instability as prognostic tools for breast cancer

    Laurent Sansregret

    Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK

    &
    Alain Nepveu

    † Author for correspondence

    Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.

    Departments of Biochemistry, Oncology & Medicine, McGill University, Montreal, Quebec, H3A 1A3 Canada

    Published Online:https://doi.org/10.2217/fon.11.34
    Free first page

    Bibliography

    • Bevers TB, Anderson BO, Bonaccio E et al.: NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J. Natl Compr. Canc. Netw.7,1060–1096 (2009).
    • Carlson RW, Allred DC, Anderson BO et al.: Breast cancer. Clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw.7,122–192 (2009).
    • Azim HA Jr, de Azambuja E, Colozza M, Bines J, Piccart MJ: Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann. Oncol. DOI: 10.1093/annonc/mdq683 (2011) (Epub ahead of print).
    • Oakman C, Santarpia L, Di Leo A: Breast cancer assessment tools and optimizing adjuvant therapy. Nat. Rev. Clin. Oncol.7,725–732 (2010).
    • Subramanian J, Simon R: What should physicians look for in evaluating prognostic gene-expression signatures? Nat. Rev. Clin. Oncol.7,327–334 (2010).
    • Perou CM, Sorlie T, Eisen MB et al.: Molecular portraits of human breast tumours. Nature406,747–752 (2000).
    • Sorlie T, Perou CM, Tibshirani R et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98,10869–10874 (2001).
    • Sorlie T, Tibshirani R, Parker J et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100,8418–8423 (2003).
    • Ellsworth RE, Decewicz DJ, Shriver CD, Ellsworth DL: Breast cancer in the personal genomics era. Curr. Genomics11,146–161 (2010).
    • 10  Paik S, Shak S, Tang G et al.: A multigene assay to predict recurrence of tamoxifen treated, node-negative breast cancer. N. Engl. J. Med.351,2817–2826 (2004).
    • 11  Paik S, Tang G, Shak S et al.: Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol.24,3726–3734 (2006).
    • 12  Van’t Veer LJ, Dai H, van de Vijver MJ et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature415,530–536 (2002).
    • 13  van de Vijver MJ, He YD, van’t Veer LJ et al.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347,1999–2009 (2002).
    • 14  Sotiriou C, Wirapati P, Loi S et al.: Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst.98,262–272 (2006).
    • 15  Loi S, Haibe-Kains B, Desmedt C et al.: Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol.25,1239–1246 (2007).
    • 16  Wang Y, Klijn JG, Zhang Y et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet365,671–679 (2005).
    • 17  Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ: Clinical application of the 70-gene profile: the MINDACT trial. J. Clin. Oncol.26,729–735 (2008).
    • 18  Zujewski JA, Kamin L: Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. Future Oncol.4,603–610 (2008).
    • 19  Fan C, Oh DS, Wessels L et al.: Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med.355,560–569 (2006).
    • 20  Chang HY, Sneddon JB, Alizadeh AA et al.: Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol.2,E7 (2004).
    • 21  Chang HY, Nuyten DS, Sneddon JB et al.: Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA102,3738–3743 (2005).
    • 22  Liu R, Wang X, Chen GY et al.: The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356,217–226 (2007).
    • 23  Ben-Porath I, Thomson MW, Carey VJ et al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet.40,499–507 (2008).
    • 24  Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY: Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell2,333–344 (2008).
    • 25  Shats I, Gatza ML, Chang JT et al.: Using a stem cell-based signature to guide therapeutic selection in cancer. Cancer Res.71(5),1772–1780 (2010).
    • 26  Kronenwett U, Ploner A, Zetterberg A et al.: Genomic instability and prognosis in breast carcinomas. Cancer Epidemiol. Biomarkers Prev.15,1630–1635 (2006).
    • 27  Habermann JK, Doering J, Hautaniemi S et al.: The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int. J. Cancer124,1552–1564 (2009).
    • 28  Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z: A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet.38,1043–1048 (2006).
    • 29  Kronenwett U, Huwendiek S, Ostring C et al.: Improved grading of breast adenocarcinomas based on genomic instability. Cancer Res.64,904–909 (2004).
    • 30  Chibon F, Lagarde P, Salas S et al.: Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat. Med.16,781–787 (2010).
    • 31  Sansregret L, Vadnais C, Livingstone J et al.: Cut homeobox 1 causes chromosomal instability by promoting bipolar division after cytokinesis failure. Proc. Natl Acad. Sci. USA108,1949–1954 (2011).
    • 32  De Vos J, Thykjaer T, Tarte K et al.: Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene21,6848–6857 (2002).
    • 33  Moon NS, Rong Zeng W, Premdas P, Santaguida M, Berube G, Nepveu A: Expression of N-terminally truncated isoforms of CDP/CUX is increased in human uterine leiomyomas. Int. J. Cancer100,429–432 (2002).
    • 34  Ripka S, Neesse A, Riedel J et al.: CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut59,1101–1110 (2010).
    • 35  Goulet B, Watson P, Poirier M et al.: Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells. Cancer Res.62,6625–6633 (2002).
    • 36  Michl P, Ramjaun AR, Pardo OE et al.: CUTL1 is a target of TGFβ signaling that enhances cancer cell motility and invasiveness. Cancer Cell7,521–532 (2005).
    • 37  Ripka S, Konig A, Buchholz M et al.: WNT5A – target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis28,1178–1187 (2007).
    • 38  Aleksic T, Bechtel M, Krndija D et al.: CUTL1 promotes tumor cell migration by decreasing proteasome-mediated Src degradation. Oncogene26,5939–5949 (2007).
    • 39  Kedinger V, Sansregret L, Harada R et al.: p110 CUX1 homeodomain protein stimulates cell migration and invasion in part through a regulatory cascade culminating in the repression of E-cadherin and occludin. J. Biol. Chem.284,27701–27711 (2009).
    • 40  Cadieux C, Kedinger V, Yao L et al.: Mouse mammary tumor virus p75 and p110 CUX1 transgenic mice develop mammary tumors of various histologic types. Cancer Res.69,7188–7197 (2009).
    • 41  Parker JS, Mullins M, Cheang MC et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol.27,1160–1167 (2009).
    • 42  Calza S, Hall P, Auer G et al.: Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res.8,R34 (2006).
    • 43  Hanna W, Nofech-Mozes S, Kahn HJ: Intratumoral heterogeneity of HER2/neu in breast cancer – a rare event. Breast J.13,122–129 (2007).
    • 44  Cottu PH, Asselah J, Lae M et al.: Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann. Oncol.19,595–597 (2008).
    • 45  Iliopoulos D, Hirsch HA, Wang G, Struhl K: Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl Acad. Sci. USA108,1397–1402 (2011).
    • 46  Korkola J, Gray JW: Breast cancer genomes – form and function. Curr. Op. Genet. Dev.20,4–14 (2010).
    • 47  Shah SP, Morin RD, Khattra J et al.: Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature461,809–813 (2009).
    • 48  Swanton C, Burrell RA, Futreal PA: Breast cancer genome heterogeneity: a challenge to personalised medicine? Breast Cancer Res.13,104 (2011).
    • 49  Navin N, Krasnitz A, Rodgers L et al.: Inferring tumor progression from genomic heterogeneity. Genome Res.20,68–80 (2010).
    • 50  Khalique L, Ayhan A, Whittaker JC et al.: The clonal evolution of metastases from primary serous epithelial ovarian cancers. Int. J. Cancer124,1579–1586 (2009).
    • 51  Torres L, Ribeiro FR, Pandis N, Andersen JA, Heim S, Teixeira MR: Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res. Treat.102,143–155 (2007).
    • 52  Yachida S, Jones S, Bozic I et al.: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature467,1114–1117 (2010).
    • 53  Campbell PJ, Yachida S, Mudie LJ et al.: The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature467,1109–1113 (2010).
    • 54  Storchova Z, Kuffer C: The consequences of tetraploidy and aneuploidy. J. Cell Sci.121,3859–3866 (2008).
    • 55  Kronenwett U, Huwendiek S, Castro J, Ried T, Auer G: Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br. J. Cancer92,389–395 (2005).
    • 56  Nigg EA: origins and consequences of centrosome aberrations in human cancers. Int. J. Cancer119,2717–2723 (2006).
    • 57  Ganem NJ, Godinho SA, Pellman D: A mechanism linking extra centrosomes to chromosomal instability. Nature460,278–282 (2009).
    • 58  Kwon M, Godinho SA, Chandhok NS et al.: Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev.22,2189–2203 (2008).
    • 59  Thompson SL, Compton DA: Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol.180,665–672 (2008).