We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Detection of NTRK gene fusions in solid tumors: recommendations from a Latin American group of oncologists and pathologists

    Mauricio Cuello

    Academic Unit of Oncology, Hospital de Clínicas Dr. Manuel Quintela, Montevideo, Uruguay

    ,
    Hernán García-Rivello

    Departmento of Clinical Pathology, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano, Buenos Aires, Argentina

    ,
    Fuad Huamán-Garaicoa

    Instituto de Salud Integral (ISAIN), Universidad Católica, Santiago de Guayaquil (Ecuador), Department of Pathology, Sociedad de Lucha Contra el Cáncer del Ecuador (SOLCA), Guayaquil, Ecuador

    ,
    Paulina Irigoyen-Piñeiros

    Clinical Oncology, Hospital Fuerzas Armadas, Quito, Ecuador

    ,
    César O Lara-Torres

    Laboratory of Molecular Pathology, Instituto Nacional de Cancerología, Ciudad de México, México

    ,
    Manglio M Rizzo

    Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Derqui-Pilar, Argentina

    Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina

    ,
    Miguel Ticona-Castro

    Service of Medical Oncology, Hospital Nacional Edgardo Rebagliati Martins, EsSalud – Jesús María, Lima (Perú), Clínica Montefiori, La Molina, Lima, Perú

    ,
    Rogelio Trejo

    Department of Medical Oncology, Centro Médico Nacional Siglo XXI, Ciudad de México, México

    &
    Pablo Zoroquiain

    *Author for correspondence:

    E-mail Address: zoroquiain@gmail.com

    Pathology Department, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile

    Published Online:https://doi.org/10.2217/fon-2023-0552

    NTRK gene fusions have been detected in more than 25 types of tumors and their prevalence is approximately 0.3% in solid tumors. This low prevalence makes identifying patients who could benefit from TRK inhibitors a considerable challenge. Furthermore, while numerous papers on the evaluation of NTRK fusion genes are available, not all countries have guidelines that are suitable for their setting, as is the case with Latin America. Therefore, a group of oncologists and pathologists from several countries in Latin America (Argentina, Chile, Ecuador, Mexico, Peru and Uruguay) met to discuss and reach consensus on how to identify patients with NTRK gene fusions in solid tumors. To do so, they developed a practical algorithm, considering their specific situation and limitations.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1(2), e000023 (2016).
    • 2. Coppola V, Barrick CA, Southon EA et al. Ablation of TrkA function in the immune system causes B cell abnormalities. Development 131(20), 5185–5195 (2004).
    • 3. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer. 17(1), 58 (2018).
    • 4. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 5(1), 25–34 (2015).
    • 5. Ricciuti B, Brambilla M, Metro G et al. Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence. Med. Oncol. 34(6), 105 (2017).
    • 6. Farago AF, Le LP, Zheng Z et al. Durable clinical response to entrectinib in NTRK1-rearranged non-small cell lung cancer. J. Thorac. Oncol. 10(12), 1670–1674 (2015).
    • 7. Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 32(1), 147–153 (2019).
    • 8. Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, Kurzrock R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis. Oncol. 2018, (2018).
    • 9. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15(12), 731–747 (2018).
    • 10. Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J. Mol. Diagn. 21(4), 553–571 (2019).
    • 11. Product Characteristics: Rozlytrek® (entrectinib). www.ema.europa.eu/en/documents/product-information/rozlytrek-epar-product-information_en.pdf
    • 12. Marchiò C, Scaltriti M, Ladanyi M et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol. 30(9), 1417–1427 (2019). •• Consensus on the most reasonable strategy to adopt when screening for NTRK fusions in oncologic patients reviewed and approved by the European Society for Medical Oncology (ESMO).
    • 13. Lange AM, Lo HW. Inhibiting TRK proteins in clinical cancer therapy. Cancers (Basel) 10(4), (2018).
    • 14. Product Characteristics: Vitrakvi® (larotrectinib). www.accessdata.fda.gov/drugsatfda_docs/label/2018/210861s000lbl.pdf
    • 15. Product Characteristics: Rozlytrek® (entrectinib). www.accessdata.fda.gov/drugsatfda_docs/label/2019/212725s000lbl.pdf
    • 16. Al-Salama ZT, Keam SJ. Entrectinib: first global approval. Drugs 79(13), 1477–1483 (2019).
    • 17. Lin JJ, Shaw AT. Recent advances in targeting ROS1 in lung cancer. J. Thorac. Oncol. 12(11), 1611–1625 (2017).
    • 18. Doebele RC, Drilon A, Paz-Ares L et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 21(2), 271–282 (2020). • Integrated efficacy and safety analysis of entrectinib in patients with metastatic or locally advanced solid tumours harboring oncogenic NTRK1, -2 and -3 gene fusions included in early-phase trials (ALKA-372-001, STARTRK-1 and STARTRK-2).
    • 19. Demetri GD, De Braud F, Drilon A et al. Updated integrated analysis of the efficacy and safety of entrectinib in patients with NTRK fusion-positive solid tumors. Clin. Cancer Res. 28(7), 1302–1312 (2022). • Updated efficacy and safety data of entrectinib with a larger number of patients and longer follow-up.
    • 20. Drilon A, Laetsch TW, Kummar S et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378(8), 731–739 (2018). • Prospective study that assessed the efficacy and safety of larotrectinib in adults and children who had tumors with fusions involving one of three tropomyosin receptor kinases.
    • 21. Hong DS, Bauer TM, Lee JJ et al. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study. Ann. Oncol. 30(2), 325–331 (2019).
    • 22. Suzuki C, Nishiyama A, Arai S et al. Inhibition of EGFR and MEK surmounts entrectinib resistance in a brain metastasis model of NTRK1-rearranged tumor cells. Cancer Sci. 113(7), 2323–2335 (2022).
    • 23. Florou V, Nevala-Plagemann C, Whisenant J, Maeda P, Gilcrease GW, Garrido-Laguna I. Clinical activity of selitrectinib in a patient with mammary analogue secretory carcinoma of the parotid gland with secondary resistance to entrectinib. J. Natl Compr. Canc. Netw. 19(5), 478–482 (2021).
    • 24. Bebb DG, Banerji S, Blais N et al. Canadian consensus for biomarker testing and treatment of TRK fusion cancer in adults. Curr. Oncol. 28(1), 523–548 (2021).
    • 25. Perreault S, Chami R, Deyell RJ et al. Canadian consensus for biomarker testing and treatment of TRK fusion cancer in pediatric patients. Curr. Oncol. 28(1), 346–366 (2021).
    • 26. Yoshino T, Pentheroudakis G, Mishima S et al. JSCO-ESMO-ASCO-JSMO-TOS: international expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions. Ann. Oncol. 31(7), 861–872 (2020).
    • 27. Garrido P, Hladun R, De Alava E et al. Multidisciplinary consensus on optimising the detection of NTRK gene alterations in tumours. Clin. Transl. Oncol. 23(8), 1529–1541 (2021).
    • 28. Awada A, Berghmans T, Clement PM et al. Belgian expert consensus for tumor-agnostic treatment of NTRK gene fusion-driven solid tumors with larotrectinib. Crit. Rev. Oncol. Hematol. 169, 103564 (2022).
    • 29. Rolfo C, Mack PC, Scagliotti GV et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J. Thorac. Oncol. 13(9), 1248–1268 (2018).
    • 30. De Matos LL, Trufelli DC, De Matos MG, Da Silva Pinhal MA. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark. Insights. 5, 9–20 (2010).
    • 31. Parham DM. Immunohistochemical markers of soft tissue tumors: Pathologic diagnosis, genetic contributions, and therapeutic options. Anal. Chem. Insights 10(Suppl. 1), 1–10 (2015).
    • 32. Kim SW, Roh J, Park CS. Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J. Pathol. Transl. Med. 50(6), 411–418 (2016).
    • 33. Solomon JP, Linkov I, Rosado A et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod. Pathol. 33(1), 38–46 (2020).
    • 34. Ye Q, Chen H, Han C et al. Nuclear staining for pan-Trk by immunohistochemistry is highly specific for secretory carcinoma of breast: pan-Trk in various subtypes of breast carcinoma. J. Clin. Pathol. doi: 10.1136/jcp-2023-208989 (2023) (Epub ahead of print).
    • 35. Wong D, Yip S, Sorensen PH. Methods for identifying patients with tropomyosin receptor kinase (TRK) fusion cancer. Pathol. Oncol. Res. 26(3), 1385–1399 (2020). •• Review article about methods for identifying patients with TRK fusion cancer that provides a summary of NTRK gene fusions by detection method and tumor type.
    • 36. Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann. Oncol. 30(Suppl. 8), viii16–viii22 (2019). •• Review article about methods for identifying NTRK fusions that included several testing algorithms.
    • 37. Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J. Clin. Pathol. 72(7), 460–467 (2019). •• Review article that discuss the biology of NTRK gene fusions and present a testing algorithm to aid detection of these gene fusions in clinical practice and guide treatment decisions.
    • 38. Pauletti G, Dandekar S, Rong H et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J. Clin. Oncol. 18(21), 3651–3664 (2000).
    • 39. Ross JS, Gay LM, Wang K et al. Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic breast cancer: an emerging opportunity for anti-HER2 targeted therapies. Cancer 122(17), 2654–2662 (2016).
    • 40. Naidoo J, Drilon A. Molecular diagnostic testing in non-small cell lung cancer. Am. J. Hematol. Oncol. 10(4), 4–11 (2014).
    • 41. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 8(1), (2017).
    • 42. Pfarr N, Kirchner M, Lehmann U et al. Testing NTRK testing: wet-lab and in silico comparison of RNA-based targeted sequencing assays. Genes Chromosomes Cancer 59(3), 178–188 (2020).
    • 43. Hechtman JF, Benayed R, Hyman DM et al. Pan-TRK immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am. J. Surg. Pathol. 41(11), 1547–1551 (2017).
    • 44. Hondelink LM, Schrader AMR, Asri Aghmuni G et al. The sensitivity of pan-TRK immunohistochemistry in solid tumours: a meta-analysis. Eur. J. Cancer 173, 229–237 (2022).
    • 45. O'connor C. Fluorescence in situ hybridization (FISH). Nature Education 1(1), 171 (2008).
    • 46. Hu L, Ru K, Zhang L et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark. Res. 2(1), 3 (2014).
    • 47. Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol. 36(3), 250–261 (2005).
    • 48. Singh J, Birbian N, Snha S, Goswami A. A critical review on PCR, its types and applications. Int. J. Avd. Res. Biol. Sci. 1(7), 65–80 (2014).
    • 49. Cummings CA, Peters E, Lacroix L, Andre F, Lackner MR. The role of next-generation sequencing in enabling personalized oncology therapy. Clin. Transl. Sci. 9(6), 283–292 (2016).
    • 50. International Association for the Study of Lung Cancer. IASLC Atlas of ALK and ROS1 Testing in Lung Cancer. Rx Press, FL, USA (2016).
    • 51. Zito Marino F, Pagliuca F, Ronchi A et al. NTRK fusions, from the diagnostic algorithm to innovative treatment in the era of precision medicine. Int. J. Mol. Sci. 21(10), (2020).
    • 52. Hechtman JF. NTRK insights: best practices for pathologists. Mod. Pathol. 35(3), 298–305 (2022).
    • 53. NCCN Clinical Practice Guidelines in Oncology. Non-small cell lung cancer (v 1.2023). www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
    • 54. NCCN Clinical Practice Guidelines in Oncology. Thyroid carcinoma (v 3.2022). www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf
    • 55. NCCN Clinical Practice Guidelines in Oncology. Head and neck cancers (v 1.2023). www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf
    • 56. Álvarez-Gómez RM, De La Fuente-Hernández MA, Herrera-Montalvo L, Hidalgo-Miranda A. Challenges of diagnostic genomics in Latin America. Curr. Opin. Genet. Dev. 66, 101–109 (2021).
    • 57. Smeltzer MP, Wynes MW, Lantuejoul S et al. The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer. J. Thorac. Oncol. 15(9), 1434–1448 (2020).
    • 58. Kirchner M, Glade J, Lehmann U et al. NTRK testing: first results of the QuiP-EQA scheme and a comprehensive map of NTRK fusion variants and their diagnostic coverage by targeted RNA-based NGS assays. Genes Chromosomes Cancer 59(8), 445–453 (2020).
    • 59. College of American Pathologists. Surveys and anatomic pathology education programs. https://documents.cap.org/documents/2023-cap-surveys-catalog.pdf
    • 60. Seraseq® FFPE NTRK fusion RNA reference material. www.seracare.com/Seraseq-FFPE-NTRK-Fusion-RNA-Reference-Material-0710-1031
    • 61. Horizon's pan-cancer RNA fusion controls support NGS Seq, RT-PCR and RT-ddPCR workflows. https://horizondiscovery.com/en/reference-standards/rna-fusions
    • 62. Weiss LM, Funari VA. NTRK fusions and Trk proteins: what are they and how to test for them. Hum. Pathol. 112, 59–69 (2021).
    • 63. Laurie SA, Siu LL, Winquist E et al. A phase 2 study of platinum and gemcitabine in patients with advanced salivary gland cancer: a trial of the NCIC Clinical Trials Group. Cancer 116(2), 362–368 (2010).
    • 64. Schoffski P, Chawla S, Maki RG et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet 387(10028), 1629–1637 (2016).
    • 65. Mir O, Brodowicz T, Italiano A et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 17(12), 1732–1742 (2016).
    • 66. Demetri GD, Von Mehren M, Jones RL et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J. Clin. Oncol. 34(8), 786–793 (2016).
    • 67. Van Der Graaf WT, Blay JY, Chawla SP et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379(9829), 1879–1886 (2012).
    • 68. García Del Muro X, López-Pousa A, Maurel J et al. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: a Spanish Group for Research on Sarcomas study. J. Clin. Oncol. 29(18), 2528–2533 (2011).
    • 69. Tap WD, Jones RL, Van Tine BA et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 388(10043), 488–497 (2016).
    • 70. Filetti S, Durante C, Hartl D et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30(12), 1856–1883 (2019).
    • 71. Ho AL, Grewal RK, Leboeuf R et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368(7), 623–632 (2013).
    • 72. Ferrari SM, Fallahi P, Ruffilli I et al. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland. Surg. 7(Suppl. 1), S19–S29 (2018).
    • 73. Cardona AF, Arrieta O, Ruiz-Patiño A et al. Precision medicine and its implementation in patients with NTRK fusion genes: perspective from developing countries. Ther. Adv. Respir. Dis. 14, 1753466620938553 (2020).