We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fon-2020-0801

The therapeutic effectiveness of immune checkpoint inhibitors in cancer patients is quite profound. However, it is generally accepted that further progress is curtailed by accompanying adverse events and by low cure rates linked to the tumor microenvironment. The multitudes of immune processes altered by low-molecular-weight thiols published over the past decades suggest they have potential to alter tumor microenvironment processes which could result in an increase in immune checkpoint inhibitor survival rates. Based on one of the most studied and most potent low-molecular-weight thiols, β-mercaptoethanol (BME), it is proposed that clinical assessment be undertaken to identify any BME benefits with relevance for proliferation/differentiation of immune cells, lymphocyte exhaustion, immunogenicity of tumor antigens and inactivation of suppressor cells/factors. The BME alterations projected to be most effective are: maintenance/replacement of glutathione in lymphocytes via facilitation of cysteine uptake, inhibition of suppressor cells/soluble factors and inactivation of free-radical, reactive oxygen species.

References

  • 1. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2), 205–214 (2015).
  • 2. Martins F, Sofiya L, Sykiotis GP et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16(9), 563–580 (2019).
  • 3. Lombardi A, Mondelli MU. Immune checkpoint inhibitors and the liver. From therapeutic efficacy to side effects. Aliment. Pharmacol. Ther. 50(8), 872–884 (2019).
  • 4. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381(16), 1535–1546 (2019).
  • 5. Reddy SM, Reuben A, Wargo JA. Influences of BRAF inhibitors on the immune microenvironment and the rationale for combined molecular and immune targeted therapy. Curr. Oncol. Rep. 18(7), 42 (2016).
  • 6. Hu Z, Ding J, Ma Z et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51(7), 1113–1122 (2019).
  • 7. Click RE. Anticancer activity and chemoprevention of xenobiotic organosulfurs in preclinical model systems. Oncol. Discov. 1, 4 (2013).
  • 8. Oliveira PVS, Laurindo FRM. Implications of plasma thiol redox in disease. Clin. Sci. (Lond.) 132(12), 1257–1280 (2018).
  • 9. Iciek M, Wlodek L. Biosynthesis and biological properties of compounds containing highly reactive, reduced sulfane sulfur. Pol. J. Pharmacol. 53(3), 215–225 (2001).
  • 10. Toohey JI. Sulfur signaling: is the agent sulfide or sulfane? Anal. Biochem. 413(2), 1–7 (2011).
  • 11. Makinodan T, Albright JW, Good PI, Peter CP, Heidrick ML. Reduced humoral immune activity in long-lived old mice: an approach to elucidating its mechanisms. Immunology 31(6), 903–911 (1976).
  • 12. Makinodan T, Albright JW. Restoration of impaired immune functions in aging animals. III. Effect of mercaptoethanol in enhancing the reduced primary antibody responsiveness in vivo. Mech. Ageing Dev. 11(1), 1–8 (1979).
  • 13. Heidrick ML, Albright JW, Makinodan T. Restoration of impaired immune functions in aging animals. IV. Action of 2-mercaptoethanol in enhancing age-reduced immune responsiveness. Mech. Ageing Dev. 13(4), 367–378 (1980).
  • 14. Heidrick ML, Hendricks LC, Cook DE. Effect of dietary 2-mercaptoethanol on the life span, immune system, tumor incidence and lipid peroxidation damage in spleen lymphocytes of aging BC3F1 mice. Mech. Ageing Dev. 27(3), 341–358 (1984).
  • 15. Click RE. Obesity, longevity, quality of life: alteration by dietary 2-mercaptoethanol. Virulence 1(6), 509–515 (2010).
  • 16. Click RE. Longevity of SLE-prone mice increased by dietary 2-mercaptoethanol via a mechanism imprinted within the first 28 days of life. Virulence 1(6), 516–522 (2010).
  • 17. Click RE. Dietary supplemented 2-mercaptoethanol prevents spontaneous and delays virally induced murine mammary tumorigenesis. Cancer Biol. Ther. 14(6), 521–526 (2013).
  • 18. Click RE. Alteration of radiation-sensitive processes associated with cancer and longevity by dietary 2-mercaptoethanol. J. Cancer Res. Ther. 10(1), 127–132 (2014).
  • 19. Pénzes L, Noble RC, Beregi E, Imre S, Izsák J, Regius O. Effect of 2-mercaptoethanol on some metabolic indices of ageing of CBA/Ca inbred mice. Mech. Ageing Dev. 45(1), 75–92 (1988).
  • 20. Fehér E, Pénzes L. Effect of an antioxidant compound (2-mercaptoethanol) on the nerve terminals of the aging small intestine. Exp. Gerontol. 25(2), 135–140 (1990).
  • 21. Fischer HD, Wustmann C, Rudolph E et al. Effect of 2-mercaptoethanol on posthypoxic and age related biochemical and behavioral changes in mice and rats. Biomed. Biochim. Acta 49(10), 1085–1090 (1990).
  • 22. Beregi E, Regius O, Rajczy K, Boross M, Pénzes L. Effect of cigarette smoke and 2-mercaptoethanol administration on age-related alterations and immunological parameters. Gerontol. 37(6), 326–334 (1991).
  • 23. Wong S, Kirkland JL, Schwanz HA et al. Effects of thiol antioxidant β-mercaptoethanol on diet-induced obese mice. Life Sci. 107(1-2), 32–41 (2014).
  • 24. Click RE, Benck L, Alter BJ. Enhancement of antibody synthesis in vitro by mercaptoethanol. Cell. Immunol. 3(1), 155–160 (1972).
  • 25. Click RE, Benck L, Alter BJ. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell. Immunol. 3(2), 264–276 (1972).
  • 26. Click RE, Benck L, Alter BJ, Lovchik JC. Immune responses in vitro. VI. Genetic control of the in vivo–in vitro discrepancies in 19S antibody synthesis. J. Exp. Med. 136(5), 1241–1257 (1972).
  • 27. Peck AB, Click RE. Immune responses in vitro. VII. Differentiation of H-2 and non-H-2 alloantigens of the mouse by a dual mixed leukocyte culture. Transplant. 16(4), 331–338 (1973).
  • 28. Heber-Katz E, Click RE. Immune responses in vitro. V. Role of mercaptoethanol in the mixed-leukocyte reaction. Cell. Immunol. 5(3), 410–418 (1972).
  • 29. Heber-Katz E, Peck AB, Click RE. Immune responses in vitro. II. Mixed leukocyte interaction in a protein-free medium. Eur. J. Immunol. 3(7), 379–385 (1973).
  • 30. Peck AB, Katz-Heber E, Click RE. Immune responses in vitro. IV. A comparison of the protein-free and mouse serum supplemented mouse mixed lymphocyte interaction assays. Eur. J. Immunol. 3(8), 516–519 (1973).
  • 31. Peck AB, Click RE. Immune responses in vitro. III. Enhancement of the mouse mixed lymphocyte interaction by isologous and homologous sera. Eur. J. Immunol. 3(7), 385–392 (1973).
  • 32. Ohmori H, Yamauchi T, Yamamoto I. Augmentation of in vitro antibody response by disulfide compounds. I. Comparison between intermolecular and intramolecular disulfides. Jpn. J. Pharmacol. 37(1), 13–19 (1985).
  • 33. Goodman MG, Weigle WO. Nonspecific activation of murine lymphocytes. I. Proliferation and polyclonal activation induced by 2-mercaptoethanol and α-thioglycerol. J. Exp. Med. 145(3), 473–489 (1977).
  • 34. Ohmori H, Yamauchi T, Yamamoto I. Augmentation of the antibody response by lipoic acid in mice. I. Analysis of the mode of action in in vitro culture system. Jpn. J. Pharmacol. 42(1), 135–140 (1986).
  • 35. Chen C, Hirsch JG. The effects of mercaptoethanol and of peritoneal macrophages on the antibody-forming capacity of nonadherent mouse spleen cells in vitro. J. Exp. Med. 136(3), 604–617 (1972).
  • 36. Opitz HG, Opitz U, Lemke H, Hewlett G, Schreml W, Flad HD. The role of fetal calf serum in the primary immune response in vitro. J. Exp. Med. 145(4), 1029–1038 (1977).
  • 37. Ohmori H, Yamamoto I. Augmentation of in vitro antibody response by disulfide compounds. II. T cell-mediated augmentation by oxidized dithiothreitol, an intramolecular disulfide. Immunopharmacology 7(3–4), 159–165 (1984).
  • 38. Sato H, Shiiya A, Kimata M et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280(45), 37423–37429 (2005).
  • 39. Chused TM, Kassan SS, Mosier DE. Macrophage requirement for the in vitro response to TNP-Ficoll: a thymic independent antigen. J. Immunol. 116(6), 1579–1581 (1976).
  • 40. Zhang M, Xia L, Yang Y et al. PD-1 blockade augments humoral immunity through ICOS-mediated CD4+ T cell instruction. Int. Immunopharmacol. 66(1), 127–138 (2019).
  • 41. Ly IA, Mishell RI. Separation of mouse spleen cells by passage through columns of Sephadex G-10. J. Immunol. Methods 5(3), 239–247 (1974).
  • 42. Opitz HG, Opitz U, Lemke H, Flad HD, Hewlett G, Schlumberger HD. Humoral primary immune response in vitro in a homologous mouse system: replacement of fetal calf serum by a 2-mercaptoethanol or macrophage-activated fraction of mouse serum. J. Immunol. 119(6), 2089–2094 (1977).
  • 43. Nordin AA. The in vitro immune response to a T-independent antigen. I. The effect of macrophages and 2-mercaptoethanol. Eur. J. Immunol. 8(11), 776–781 (1978).
  • 44. Igarashi T, Okada M, Kishimoto T, Yamamura Y. In vitro induction of polyclonal killer T cells with 2-mercaptoethanol and the essential role of macrophages in this process. J. Immunol. 118(5), 1697–1703 (1977).
  • 45. Peck AB, Andersson LC, Wigzell H. Secondary in vitro responses of T lymphocytes to non-H-2 alloantigens. J. Exp. Med. 145(4), 802–818 (1977).
  • 46. Macphail S, Yron I, Stutman O. Primary in vitro cytotoxic T cell response to non-major histocompatibility complex alloantigens in normal mice. J. Exp. Med. 156(2), 610–621 (1982).
  • 47. Cerottini J-C, Enger HD, MacDonald HR, Brunner KT. Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures. J. Exp. Med. 140(3), 703–717 (1974).
  • 48. Engers HD, MacDonald HR, Cerottini JC, Brunner KT. Effect of delayed addition of 2-mercaptoethanol on the generation of mouse cytotoxic T lymphocytes in mixed leukocyte cultures. Eur. J. Immunol. 5(3), 223–225 (1975).
  • 49. Walunas TL, Lenschow DJ, Bakker CY et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5), 405–413 (1994).
  • 50. Yang YF, Zou JP, Mu J et al. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res. 57(18), 4036–4041 (1997).
  • 51. Redelman D, Hudig D. The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J. Immunol. 124(2), 870–878 (1980).
  • 52. Macho-Fernandez E, Brigl M. The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions. Front. Immunol. 6, 362 (2015).
  • 53. Smyth MJ, Thia KY, Street SE et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191(4), 661–668 (2000).
  • 54. Swann JB, Uldrich AP, van Dommelen S et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113(25), 6382–6385 (2009).
  • 55. Bellone M, Ceccon M, Grioni M et al. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS ONE 5(1), e8646 (2010).
  • 56. Rhost S, Löfbom L, Rynmark B-M et al. Identification of novel glycol ligands activating a sulfatide-reactive, CD1d-restricted, Type II natural killer T lymphocyte. Eur. J. Immunol. 42(11), 2851–2860 (2012).
  • 57. McEwen-Smith RM, Salio M, Cerundolo V. The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol. Res. 3(5), 425–435 (2015).
  • 58. Dasgupta S, Kumar V. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 68(8), 665–676 (2016).
  • 59. Ristow SS, Starkey JR, Stanford DR, Davis WC, Brooks CG. Cell surface thiols, but not intracellular glutathione, are essential for cytolysis by a cloned murine natural killer cell line. Immunol. Invest. 14(5), 401–414 (1985).
  • 60. van den Brink RM, Boggs SS, Herberman RB, Hiserodt JC. The generation of natural killer (NK) cells from NK precursor cells in rat long term bone marrow cultures. J. Exp. Med. 172(1), 303–313 (1990).
  • 61. Kuppen PJ, Eggermont AM, Marinelli A, de Heer E, van de Velde CJ, Fleuren GJ. Induction of lymphokine-activated killer activity in rat splenocyte cultures: the importance of 2-mercaptoethanol and indomethacin. Cancer Immunol. Immunother. 33(1), 28–32 (1991).
  • 62. Stacey NH, Craig GK. Role of thiols in human peripheral blood natural killer and killer lymphocyte activities. Experientia 45(2), 180–181 (1989).
  • 63. Yamauchi A, Bloom ET. Requirement of thiol compounds as reducing agents for IL-2-mediated induction of LAK activity and proliferation of human NK cells. J. Immunol. 151(10), 5535–5544 (1993).
  • 64. Furuke K, Shiraishi M, Mostowski HS, Bloom ET. Fas ligand induction in human NK cells is regulated by redox through a calcineurin-nuclear factors of activated T cell-dependent pathway. J. Immunol. 162(4), 1988–1993 (1999).
  • 65. Delneste Y, Jeannin P, Sebille E, Aubry JP, Bonnefoy JY. Thiols prevent Fas (CD95)-mediated T cell apoptosis by down-regulating membrane Fas expression. Eur. J. Immunol. 26(12), 2981–2988 (1996).
  • 66. Zheng X, Qian Y, Fu B et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20(12), 1656–1667 (2019).
  • 67. Kahan SM, Zajac AJ. Immune exhaustion: past lessons and new insights from lymphocytic choriomeningitis virus. Viruses 11(2), 156 (2019).
  • 68. Yi JY, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology 129(4), 474–481 (2010).
  • 69. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15(8), 486–499 (2015).
  • 70. West EE, Jin HT, Rasheed AU et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123(6), 2604–2615 (2013).
  • 71. Cayota A, Vuillier F, Gonzalez G, Dighiero G. In vitro antioxidant treatment recovers proliferative responses of anergic CD4+ lymphocytes from human immunodeficiency virus-infected individuals. Blood 87(11), 4746–4753 (1996).
  • 72. Iwata S, Hori T, Sato N et al. Adult T cell leukemia (ATL)-derived factor/human thioredoxin prevents apoptosis of lymphoid cells induced by L-cystine and glutathione depletion: possible involvement of thiol-mediated redox regulation in apoptosis caused by pro-oxidant state. J. Immunol. 158(7), 3108–3117 (1997).
  • 73. Hadzic T, Li L, Cheng N, Walsh SA, Spitz DR, Knudson CM. The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J. Immunol. 175(12), 7965–7972 (2005).
  • 74. Smith KA. Commentary: The interleukin-2 T cell system: a new cell growth model. Front. Immunol. 6, 414 (2015).
  • 75. Zmuda J, Friedenson B. Changes in intracellular glutathione levels in stimulated and unstimulated lymphocytes in the presence of 2-mercaptoethanol or cysteine. J. Immunol. 130(1), 362–364 (1983).
  • 76. Dröge W, Eck HP, Gmünder H, Mihm S. Requirement for pro-oxidant and antioxidant states in T cell mediated immune responses-Relevance for the pathogenetic mechanisms of AIDS? Klin. Wochenschr. 69(21–23), 1118–1122 (1991).
  • 77. Dröge W, Eck HP, Gmünder H, Mihm S. Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Am. J. Med. 91(3C), S140–S144 (1991).
  • 78. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine – a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 7(4), 355–359 (2007).
  • 79. Dröge W, Holm E. Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction. FASEB J. 11(13), 1077–1089 (1997).
  • 80. Perry LL, Benacerraf B, Greene MI. Regulation of the immune response to tumor antigen. IV. Tumor antigen-specific suppressor factor(s) bear I-J determinants and induce suppressor T cells in vivo. J. Immunol. 121(6), 2144–2147 (1978).
  • 81. Ting CC, Rodrigues D. Switching on the macrophage-mediated suppressor mechanism by tumor cells to evade host immune surveillance. Proc. Natl Acad. Sci. USA 77(7), 4265–4269 (1980).
  • 82. McKeown MJ, Hall ND, Corvaian JR. Defective monocyte accessory function due to surface sulfhydryl oxidation in rheumatoid arthritis. Clin. Exp. Immunol. 56(3), 607–613 (1984).
  • 83. Hong H, Gu Y, Zhang H et al. Depletion of CD4+ CD25+ regulatory T cells enhances natural killer T cell-mediated anti-tumour immunity in a murine mammary breast cancer model. Clin. Exp. Immunol. 159(1), 93–99 (2010).
  • 84. Suarez N, Alfaro C, Dubrot J et al. Synergistic effects of CTLA-4 blockade with tremelimumab and elimination of regulatory T lymphocytes in vitro and in vivo. Int. J. Cancer 129(2), 374–386 (2011).
  • 85. Simpson TR, Li F, Montalvo-Ortiz W et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210(9), 1695–1710 (2013).
  • 86. Kapp JA, Pierce CW, Theze J, Benacerraf B. Modulation of immune responses by suppressor T cells. Fed. Proc. 37(10), 2361–2364 (1978).
  • 87. Pierce CW, Kapp JA. Activities of nonspecific and specific suppressor T-cell factors in immune responses. Agents Actions Suppl. 7, 126–133 (1980).
  • 88. Aune TM. Role and function of antigen nonspecific suppressor factors. Crit. Rev. Immunol. 7(2), 93–130 (1987).
  • 89. Eardley DD, Gershon RK. Induction of specific suppressor T cells in vitro. J. Immunol. 117(1), 313–318 (1976).
  • 90. Wu J, Levy EM, Black PH. 2-Mercaptoethanol and N-acetylcysteine enhance T cell colony formation in AIDS and ARC. Clin. Exp. Immunol. 77(1), 7–10 (1989).
  • 91. Efimova O, Szankasi P, Kelley TW. Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLoS ONE 6(1), e16013 (2011).
  • 92. Irimajiri N, Bloom ET, Makinodan T. Suppression of murine natural killer cell activity by adherent cells from aging mice. Mech. Ageing Dev. 31(2), 155–162 (1985).
  • 93. Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115(9), 2572–2583 (2005).
  • 94. Koren HS, Hodes RJ. Effect of tumor cells on the generation of cytotoxic T lymphocytes in vitro. I. Accessory cell functions of mouse tumor cells in the generation of cytotoxic T lymphocytes in vitro: replacement of adherent phagocytic cells by tumor cells or 2-mercaptoethanol. Eur. J. Immunol. 7(6), 394–400 (1977).
  • 95. Gelderman KA, Hultqvist M, Pizzolla A et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J. Clin. Invest. 117(10), 3020–3028 (2007).
  • 96. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70(1), 68–77 (2010).
  • 97. Yan Z, Garg SK, Kipnis J, Banerjee R. Extracellular redox modulation by regulatory T cells. Nat. Chem. Biol. 5(10), 721–723 (2009).
  • 98. Schnaper HW, Aune TM. Suppression of immune responses to sheep erythrocytes by the lymphokine soluble immune response suppressor (SIRS) in vivo. J. Immunol. 137(3), 863–867 (1986).
  • 99. Laurence J, Gottlieb AB, Kunkel HG. Soluble suppressor factors in patients with acquired immune deficiency syndrome and its prodrome. Elaboration in vitro by T lymphocyte-adherent cell interactions. J. Clin. Invest. 72(6), 2072–2081 (1983).
  • 100. Brown-Galatola CH, Hall ND. Impaired suppressor cell activity due to surface sulphydryl oxidation in rheumatoid arthritis. Br. J. Rheumatol. 31(9), 599–603 (1992).
  • 101. Macphail S, Stutman O. Suppressor T cells in a primary in vitro response to non-major histocompatibility alloantigens. J. Exp. Med. 156(5), 1398–1414 (1982).
  • 102. Corse E, Gottschalk RA, Allison JP. Strength of TCR-peptide/MHC interactions and in vivo T cell responses. J. Immunol. 186(9), 5039–5045 (2011).
  • 103. Park B, Lee S, Kim E et al. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 27(2), 369–382 (2006).
  • 104. Chowell D, Morris LGT, Grigg CM et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359(6375), 582–587 (2018).
  • 105. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat. Rev. Cancer 12(4), 307–313 (2012).
  • 106. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 348(6230), 69–74 (2015).
  • 107. Zaretsky JM, Garcia-Diaz A, Shin DS et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375(9), 819–829 (2016).
  • 108. Melvold RW, Kohn HI, Dunn GR. History and genealogy of the H-2Kb mutants from the C57BL/6Kh colony. Immunogenetics 15(2), 177–185 (1982).
  • 109. Festenstein H. Immunogenetic and biological aspects of in vitro lymphocyte allotransformation (MLR) in the mouse. Transplant. Rev. 15, 62–88 (1973).
  • 110. Snell GD. Methods for the study of histocompatibility genes. J. Genet. 49, 87–108 (1948).
  • 111. Melief CJM, DeWaal LP, Van der Meulen MY, Melvold RW, Kohn HI. Fine specificity of alloimmune cytotoxic T lymphocytes directed against H-2K. A Study with Kb Mutants. J. Exp. Med. 151(5), 993–1013 (1980).
  • 112. Melief CJM, Schwartz RS, Kohn HI, Melvold RW. Dermal histocompatibility and in vitro lymphocyte reactions of three new H-2 mutants. Immunogenetics 2, 337–348 (1975).
  • 113. Adelmann A, Sherburne C, Condie RM, Click RE. Genetic control of permanently accepted allografts. Transplant. Proc. 19(1 Pt 1), 890–893 (1987).
  • 114. Yamaga KM, Pfaffenbach GM, Pease LR et al. Biochemical studies of H-2K antigens from a group of related mutants. I. Identification of a shared mutation in B6-H-2bm5 and B6-H-2bm16. Immunogenetics 17(1), 19–29 (1983).
  • 115. Melief CJM, van der Meulen MY, Postma P. CML typing of serologically identical H-2 mutants. Distinction of 19 specificities on the cells of four mouse strains carrying z1 locus mutations and the strain of origin. lmmunogenetics 5, 43–56 (.1977).
  • 116. Wettstein PJ, Bailey DW, Mobraaten LE, Klein JA, Frelinger JA. T-lymphocyte response to H-2 mutants. I. Proliferation is dependent on Ly 1+2+ cells. J. Exp. Med. 147(5), 1395–1404 (1978).
  • 117. Click RE, Adelmann AM, Azar MM. Immune responses in vitro. XIII. MLR detectability of Mlsa, Mlsc, Mlsb, and Mlsd encoded products. J. Immunol. 134(5), 2948–2952 (1985).
  • 118. Molnar-Kimber KL, Sprent J. Evidence that strong Mls determinants are nonpolymorphic. Transplantation 31(5), 376–378 (1981).
  • 119. Click RE, Azar MM, Anderson VE. Immune responses in vitro. XII. Two independently segregating loci control Mls product(s). J. Immunol. 128(4), 1502–1506 (1982).
  • 120. Click RE, Adelmann AM. Genetic complexity of Mls. J. Immunogenet. 15(1–3), 39–47 (1988).
  • 121. Abe R, Ryan JJ, Finkelman FD, Hodes RJ. T cell recognition of Mls: T cell clones demonstrate polymorphism between Mlsa, Mlsc, and Mlsd. J. Immunol. 138(2), 373–379 (1987).
  • 122. Abe R, Ryan JJ, Hodes RJ. Clonal analysis of the Mls system. A reappraisal of polymorphism and allelism among Mlsa, Mlsc, and Mlsd. J. Exp. Med. 165(4), 1113–1129 (1987).
  • 123. Ryan JJ, Mond JJ, Finkelman FD. The Mlsd-defined primary mixed lymphocyte reaction: a composite response to Mlsa and Mlsc determinants. J. Immunol. 138(12), 4085–4092 (1987).
  • 124. Janeway CA, Lerner EA, Jason JM, Jones B. T lymphocytes responding to Mls-locus antigens are Lyt-1+2- and I-A restricted. Immunogenetics 10(5), 481–497 (1980).
  • 125. Hämmerling U, Toulon M, Chun M, Palfree S, Hoffmann MK. Bidirectionality of mixed lymphocyte stimulation (Mls) response. Effects of Mlsb stimulator cells on Mlsa helper cells. J. Immunol. 140(8), 2543–2548 (1988).
  • 126. Frankel WN, Kudy C, Coffin JM, Huber BT. Linkage of Mls genes to endogenous mouse mammary tumour viruses of inbred mice. Nature 349(6309), 526–528 (1991).
  • 127. Pullen AM, Choi Y, Kushnir E, Kappler J, Marrack P. The open reading frames in the 3′ long terminal repeats of several mouse mammary tumor virus integrants encode V/∼3-specific superantigens. J. Exp. Med. 175(1), 41–47 (1992).
  • 128. Snell GD, Stimpfling JH. Genetics of tissue transplantation. Biology of the Laboratory Mouse. (2nd Edition). Green EL (Ed.). McGraw-Hill, NY, USA, 457 (1966).
  • 129. Hauptfeld V, Klein J. A new histogenetic method for minor histocompatibility antigen typing. J. Immunol. 118(2), 423–426 (1977).
  • 130. Wu S, Thomas DW. Syngeneic responses by murine thymocytes: a role for non-MHC and non-Mls genes. J. Immunol. 134(1), 10–15 (1985).
  • 131. Nakashima I, Nagase F, Isobe K et al. Induction and characterization of minor histocompatibility antigens. Specific primary cytotoxic T lymphocyte responses in vitro. J. Immunol. 140(3), 723–729 (1988).
  • 132. Roopenian DC, Click RE. A new cytotoxic lymphocyte defined antigen coded by a gene closely linked to the H-3 locus. Immunogenetics 10(4), 333–341 (1980).
  • 133. Click RE. Complexity of minor histocompatibility loci. Hum. Immunol. 14(3), 220–233 (1985).
  • 134. Goodman MG, Weigle WO. Nonspecific activation of murine lymphocytes. II. Parameters of the interaction between splenic lymphocytes and radiolabeled 2-mercaptoethanol in vitro. J. Immunol. 120(5), 1453–1459 (1978).
  • 135. Goodman MG, Fidler JM, Weigle WO. Nonspecific activation of murine lymphocytes. III. Nonspecific activation of murine lymphocytes. III. Cells responding mitogenically to 2-mercaptoethanol are typical unstimulated lymphocytes. J. Immunol. 121(5), 899–1904 (1978).
  • 136. Goodman MG, Fidler JM, Weigle WO. Nonspecific activation of murine lymphocytes. IV. Proliferation of a distinct, late maturing lymphocyte subpopulation induced by 2-mercaptoethanol. J. Immunol. 121(5), 1905–1913 (1978).
  • 137. Goodman MG, Weigle WO. Nonspecific activation of murine lymphocytes. V. Role of cellular collaboration between T and B lymphocytes in the proliferative and polyclonal responses to 2-mercaptoethanol. J. Immunol. 122(4), 1433–1439 (1979).
  • 138. Goodman MG, Weigle WO. Nonspecific activation of murine lymphocytes. VI. Mediation of synergistic interaction between T and B lymphocytes by a cell-associated, reciprocally acting lymphocyte proliferation helper. J. Exp. Med. 149(3), 644–657 (1979).
  • 139. Goodman MG, Weigle WO. Nonspecific activation of murine lymphocytes. VII. Functional correlates of molecular structure of thiol compounds. J. Immunol. 126(1), 20–26 (1981).
  • 140. Igarashi T, Okada M, Kishimoto T, Yamamura Y. In vitro induction of polyclonal killer T cells with 2-mercaptoethanol and the essential role of macrophages in this process. J. Immunol. 118(5), 1697–1703 (1977).
  • 141. Place DE, Kanneganti T-D. Cell death-mediated cytokine release and its therapeutic implications. J. Exp. Med. 216(7), 1474–1486 (2019).
  • 142. Heidrick ML, Makinodan T. Presence of impairment of humoral immunity in nonadherent spleen cells of old mice. J. Immunol. 111(5), 1502–1506 (1973).
  • 143. Segre D, Segre M. Humoral immunity in aged mice. II. Increased suppressor T cell activity in immunologically deficient old mice. J. Immunol. 116(3), 735–738 (1976).
  • 144. Chang MP, Tanaka JL, Stosic-Grujicic S et al. Restoration of impaired immune functions in aging animals. VI. Differential potentiating effect of 2-mercaptoethanol on young and old murine spleen cells. Int. J. Immunopharmacol. 4(5), 429–436 (1982).
  • 145. Makinodan T, Albright JW. Restoration of impaired immune functions in aging animals. II. Effect of mercaptoethanol in enhancing the reduced primary antibody responsiveness in vitro. Mech. Ageing Dev. 10(5), 325–340 (1979).
  • 146. Fong TC, Makinodan T. Preferential enhancement by 2-mercaptoethanol of IL-2 responsiveness of T blast cells from old over young mice is associated with potentiated protein kinase C translocation. Immunol. Lett. 20(2), 149–154 (1989).
  • 147. Nauss KM, Connor AM, Newberne PM. Alterations in immune function in rats caused by dietary lipotrope deficiency: effect of culture medium, 2-mercaptoethanol and mitogen dose on the in vitro lymphocyte transformation response. J. Nutr. 112(12), 2342–2352 (1982).
  • 148. Franklin RA, Li YM, Arkins S, Kelley KW. Glutathione augments in vitro proliferative responses of lymphocytes to concanavalin A to a greater degree in old than in young rats. J. Nutr. 120(12), 1710–1717 (1990).
  • 149. Dussault I, Miller SC. Decline in natural killer cell-mediated immunosurveillance in aging mice – a consequence of reduced cell production and tumor binding capacity. Mech. Ageing Dev. 75(2), 115–129 (1994).
  • 150. Mikael N, Mirza NM, Zaharian BI et al. Genetic control of the decline of natural killer cell activity in aging mice. Growth Dev. Aging 58(1), 3–12 (1994).
  • 151. Sabry M, Lowdell MW. Tumor-primed NK cells: waiting for the green light. Front. Immunol. 4, e408 (2013).
  • 152. Ferrández MD, Correa R, Del Rio M, De La Fuente M. Effects in vitro of several antioxidants on the natural killer function of aging mice. Exp. Gerontol. 34(5), 675–685 (1999).
  • 153. De La Fuente M, Miquel J, Catalán MP, Víctor VN, Guayerbas N. The amount of thiolic antioxidant ingestion needed to improve several immune functions is higher in aged than in adult mice. Free Radic. Res. 36(2), 119–126 (2002).
  • 154. Ali AA, Bilodeau JF, Sirard MA. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology 59(3–4), 939–949 (2003).
  • 155. Yang YJ, Wu PF, Long LH et al. Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function. Aging Cell 9(5), 709–721 (2010).
  • 156. Marquardt H, Sapozink MD, Zedeck MS. Inhibition by cysteamine-HCl of oncogenesis induced by 7,12-dimethylbenz(alpha)anthracene without affecting toxicity. Cancer Res. 34(12), 3387–3390 (1974).
  • 157. Tatsuta M, Iishi H, Yamamura H, Baba M, Mikuni T, Taniguchi H. Inhibitory effect of prolonged administration of cysteamine on experimental carcinogenesis in rat stomach induced by N-methyl-N'-nitro-N-nitrosoguanidine. Int. J. Cancer 41(3), 423–426 (1988).
  • 158. Tatsuta M, Iishi H, Baba M, Taniguchi H. Tissue norepinephrine depletion as a mechanism for cysteamine inhibition of colon carcinogenesis induced by azoxymethane in Wistar rats. Int. J. Cancer 44(6), 1008–1011 (1989).
  • 159. Tatsuta M, Iishi H, Baba M. Inhibition by cysteamine of hepatocarcinogenesis induced by N-nitrosomorpholine in Sprague–Dawley rats. Int. J. Cancer 44(3), 529–533 (1989).
  • 160. Tatsuta M, Iishi H, Baba M, Taniguchi H. Attenuating effect of the monoamine oxidase inhibitor furazolidone on the anti-carcinogenetic effect of cysteamine on gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Int. J. Cancer 48(4), 605–608 (1991).
  • 161. Harman D. Prolongation of the normal life span by radiation protection chemicals. J. Gerontol. 12(3), 257–263 (1957).
  • 162. Harman D. Aging: overview. Ann. NY Acad. Sci. 928, 1–21 (2001).
  • 163. Bluestone JA, Lopez C. Suppression of the immune response in tumor-bearing mice. I. Response to virus-producing tumor cells and non-virus-producing tumor cells. J. Natl Cancer Inst. 63(5), 1215–1220 (1979).
  • 164. Hoffeld JT. Agents which block membrane lipid peroxidation enhance mouse spleen cell immune activities in vitro: relationship to the enhancing activity of 2-mercaptoethanol. Eur. J. Immunol. 11(5), 371–376 (1981).
  • 165. Rathbun WB, Holleschau AM, Cohen JF, Nagasawa HT. Prevention of acetaminophen- and naphthalene-induced cataract and glutathione loss by CySSME. Invest. Ophthalmol. Vis. Sci. 37(5), 923–929 (1996).
  • 166. Nagasawa HT, Shoeman DW, Cohen JF, Rathbun WB. Protection against acetaminophen-induced hepatotoxicity by L-CySSME and its N-acetyl and ethyl ester derivatives. J. Biochem. Toxicol. 11(6), 289–295 (1996).
  • 167. Choe C, Shin YW, Kim EJ et al. Synergistic effects of glutathione and β-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J. Reprod. Dev. 56(6), 575–582 (2010).
  • 168. Click RE. A review: alteration of in vitro reproduction processes by thiols – emphasis on 2-mercaptoethanol. J. Reprod. Dev. 60(6), 399–405 (2014).
  • 169. Moshtagh PR, Emami SH, Sharifi AM. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J. Physiol. Biochem. 69(3), 451–458 (2013).
  • 170. Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10(6), 773–781 (2009).
  • 171. Toohey JI. Sulphane sulphur in biological systems: a possible regulatory role. Biochem. J. 264(3), 625–632 (1989).
  • 172. Déas O, Dumont C, Mollereau B et al. Thiol-mediated inhibition of FAS and CD2 apoptotic signaling in activated human peripheral T cells. Int. Immunol. 9(1), 117–125 (1997).
  • 173. Zeng H, Trujillo ON, Moyer MP, Botnen JH. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells. Nutr. Cancer 63(2), 248–255 (2011).
  • 174. Chandra-Kuntal K, Singh SV. Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo. Cancer Prev. Res. 3(11), 1473–1483 (2010).
  • 175. Wallace JL, Ferraz JG, Muscara MN. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury. Antioxid. Redox Signal. 17(1), 58–67 (2012).
  • 176. Miller TW, Wang EA, Gould S et al. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem. 287(6), 4211–4221 (2012).
  • 177. Coletta C, Papapetropoulos A, Erdelyi K et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl Acad. Sci. USA 109(23), 9161–9166 (2012).
  • 178. Edwards BS, Curry MS, Southon EA, Chong AS, Graf LH Jr. Evidence for a dithiol-activated signaling pathway in natural killer cell avidity regulation of leukocyte function antigen-1: structural requirements and relationship to phorbol ester- and CD16-triggered pathways. Blood 86(6), 2288–2301 (1995).
  • 179. Hogg PJ. Targeting allosteric disulphide bonds in cancer. Nat. Rev. Cancer 13(7), 425–431 (2013).
  • 180. Hansen JM, Jones DP. Thiols in cancer. In: Nutritional Oncology. Elsevier, Inc., MA, USA, 307–320 (2006).
  • 181. Sbodio JI, Snyder SH, Paul BD. Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities. Antioxid. Redox Signal. 30(11), 1450–1499 (2019).
  • 182. Pruett SB, Obiri N, Kiel JL. Involvement and relative importance of at least two distinct mechanisms in the effects of 2-mercaptoethanol on murine lymphocytes in culture. J. Cell. Physiol. 141(1), 40–45 (1989).
  • 183. Levring TB, Hansen AK, Nielsen BL et al. Activated human CD4+ T cells express transporters for both cysteine and cystine. Sci. Rep. 2, 266 (2012).
  • 184. Gmünder H, Eck HP, Benninghoff B, Roth S, Dröge W. Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell. Immunol. 129(1), 32–46 (1990).
  • 185. Ghosh T, Barik S, Bhuniya A et al. Tumor-associated mesenchymal stem cells inhibit naive T cell expansion by blocking cysteine export from dendritic cells. Int. J. Cancer 139(9), 2068–2081 (2016).
  • 186. Edinger AL, Thompson CB. Antigen presenting cells control T cell proliferation by regulating amino acid availability. Proc. Natl Acad. Sci. USA 99(3), 1107–1109 (2002).
  • 187. Ishii T, Sugita Y, Bannai S. Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J. Cell. Physiol. 133(2), 330–336 (1987).
  • 188. Angelini G, Gardella S, Ardy M et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99(3), 1491–1496 (2002).
  • 189. Ohmori H, Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. I. 2-Mercaptoethanol-induced stimulation of the uptake of cystine, an essential amino acid. J. Exp. Med. 155(5), 1277–1290 (1982).
  • 190. Ohmori H, Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. II. A major role of the mixed disulfide between 2-mercaptoethanol and cysteine. Cell. Immunol. 79(1), 173–185 (1983).
  • 191. Abdulle AE, Bourgonje AR, Kieneker LM et al. Serum free thiols predict cardiovascular events and all-cause mortality in the general population: a prospective cohort study. BMC Med. 18(1), 130 (2020).
  • 192. Berk M, Dean O, Cotton SM et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J. Affect. Disord. 135(1–3), 389–394 (2011).
  • 193. Demedts M, Behr J, Buhl R et al. IFIGENIA study group. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 353(21), 2229–2242 (2005).
  • 194. Wiel C, Le Gal K, Ibrahim MX et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178(2), 330–345 (2019).
  • 195. Banne AF, Amiri A, Pero RW. Reduced level of serum thiols in patients with a diagnosis of active disease. J. Anti-Aging Med. 6(4), 327–334 (2003).
  • 196. Koning AM, Meijers WC, Pasch A. Serum free thiols in chronic heart failure. Pharmacol. Res. 111, 452–458 (2016).
  • 197. Damba T, Bourgonje AR, Abdulle AE et al. Oxidative stress is associated with suspected non-alcoholic fatty liver disease and all-cause mortality in the general population. Liver Int. 40(9), 2148–2159 (2020).
  • 198. Click RE. Potentialalteration of COVID-19 by beta-mercaptoethanol. Future Microbiol. 15, 1313–1318 (2020).