We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Gilteritinib use in the treatment of relapsed or refractory acute myeloid leukemia with a FLT3 mutation

    Octavio Ballesta-López

    Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, 106. 46026, Valencia, Spain

    ,
    Antonio Solana-Altabella

    Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, 106. 46026, Valencia, Spain

    ,
    Juan Eduardo Megías-Vericat

    Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, 106. 46026, Valencia, Spain

    ,
    David Martínez-Cuadrón

    Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, 106. 46026, Valencia, Spain

    CIBERONC, Instituto Carlos III, Madrid, Spain

    &
    Pau Montesinos

    *Author for correspondence: Tel.: +34 961245876;

    E-mail Address: montesinos_pau@gva.es

    Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, 106. 46026, Valencia, Spain

    CIBERONC, Instituto Carlos III, Madrid, Spain

    Published Online:https://doi.org/10.2217/fon-2020-0700

    The prognosis of patients with relapsed or refractory acute myeloid leukemia (R/R AML) is dismal with salvage standard approaches, and mutations of FMS-like tyrosine kinase 3 (FLT3) gene, occurring in around 30% of AML patients may confer even poorer outcomes. Several targeted tyrosine kinase inhibitors have been developed to improve FLT3-mutated AML patient´s survival. Gilteritinib, a highly specific second-generation class I oral FLT3 inhibitor, has demonstrated superiority to salvage chemotherapy (SC) in R/R FLT3 mutated AML based on significantly longer OS in the gilteritinib arm than in the SC arm. Gilteritinib is generally well tolerated, but some clinically relevant adverse events should be monitored, especially myelosuppression, QTc prolongation and differentiation syndrome, usually manageable (dose reductions, interruption or discontinuation) and reversible. We discuss clinical development, efficacy, safety and mechanisms of resistance of gilteritinib in the treatment of R/R patients with FLT3 mutated AML.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Bose P, Vachhani P, Cortes JE. Treatment of relapsed/refractory acute myeloid leukemia. Curr. Treat. Options Oncol. 18(3), 17 (2017).
    • 2. Megías-Vericat JE, Martínez-Cuadrón D, Sanz MÁ, Montesinos P. Salvage regimens using conventional chemotherapy agents for relapsed/refractory adult AML patients: a systematic literature review. Ann. Hematol. 97(7), 1115–1153 (2018).
    • 3. Döhner H, Estey E, Grimwade D et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4), 424–447 (2017).
    • 4. Thol F, Schlenk RF, Heuser M, Ganser A. How I treat refractory and early relapsed acute myeloid leukemia. Blood 126(3), 319–327 (2015).
    • 5. Montesinos P, Bergua J, Infante J et al. Update on management and progress of novel therapeutics for R/R AML: an Iberian expert panel consensus. Ann. Hematol. 98(11), 2467–2483 (2019).
    • 6. Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms underlying resistance to FLT3 inhibitors in acute myeloid leukemia. Biomedicines 8(8), 245 (2020).
    • 7. Megías-Vericat JE, Ballesta-López O, Barragán E, Martínez-Cuadrón D, Montesinos P. Tyrosine kinase inhibitors for acute myeloid leukemia: a step toward disease control? Blood Rev. (2020) (Epub ahead of print).
    • 8. Tarver TC, Hill JE, Rahmat L et al. Gilteritinib is a clinically active FLT3 inhibitor with broad activity against FLT3 kinase domain mutations. Blood Adv. 4(3), 514–524 (2020).
    • 9. Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339(1), b2700 (2009).
    • 10. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J. Hematol. Oncol. 4(13), 1–10 (2011).
    • 11. Mori M, Kaneko N, Ueno Y et al. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs 35(5), 556–565 (2017). • The preclinical study demonstrates FLT3 inhibition by gilteritinib at low nanomolar concentration that supported its evaluation in clinical trials.
    • 12. Leischner H, Albers C, Grundler R et al. SRC is a signaling mediator in FLT3-ITD - But not in FLT3-TKD-positive AML. Blood 119(17), 4026–4033 (2012).
    • 13. Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk. Lymphoma 59(10), 2273–2286 (2018).
    • 14. Smith CC, Perl AE, Altman JK et al. Comparative assessment of FLT3 variant allele frequency by capillary electrophoresis and next-generation sequencing in FLT3mut+ patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) who received gilteritinib therapy [abstract]. Blood 130(Suppl. 1), 1411–1411 (2017).
    • 15. Park IK, Mundy-Bosse B, Whitman SP et al. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia 29(12), 2382–2389 (2015).
    • 16. James AJ, Smith CC, Litzow M et al. Pharmacokinetic profile of gilteritinib: a novel FLT-3 tyrosine kinase inhibitor. Clin. Pharmacokinet. 835 [Epub ahead of print] (2020). • Focuses on the drug–drug interaction of gilteritinib highlighting that coadministration of gilteritinib with CYP3A4 or multidrug and toxin extrusion 1 substrates did not impact substrate concentrations.
    • 17. Smith CC, Levis MJ, Litzow MR et al. Pharmacokinetic profile and pharmacodynamic effects of ASP2215, a selective, potent inhibitor of FLT3/AXL, in patients with relapsed or refractory acute myeloid leukemia: results from a first-in-human phase 1/2 study [abstract]. Blood 126(23), 4836–4836 (2015).
    • 18. Smith CC, Levis MJ, Litzow MR et al. Pharmacokinetics and pharmacodynamics of gilteritinib in patients with relapsed or refractory acute myeloid leukemia [abstract]. J. Clin. Oncol. 34, 7026–7026 (2016).
    • 19. Astellas Pharma US Inc. “XOSPATA(R) (gilteritinib): US prescribing information.” [Online] (2018). www.accessdata.fda.gov/drugsatfda_docs/label/2019/211349s001lbl.pdf
    • 20. Usuki K, Sakura T, Kobayashi Y et al. Clinical profile of gilteritinib in Japanese patients with relapsed/refractory acute myeloid leukemia: an open-label phase 1 study. Cancer Sci. 109(10), 3235–3244 (2018).
    • 21. Perl AE, Altman JK, Cortes J et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol. 18(8), 1061–1075 (2017). • The Phase I–II study examines seven dose-escalation or dose-expansion cohorts (from 20 to 450 mg) of gilteritinib. Maximum tolerated dose was established in 300 mg/day. The results led to the Phase III trial with the once-daily 120 mg as the target dose.
    • 22. Perl AE, Martinelli G, Cortes JE et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. J. Med. 381(18), 1728–1740 (2019). •• The Phase III study shows an overall survival benefit with gilteritinib monotherapy compared with salvage chemotherapy in relapsed/refractory acute myeloid leukemia.
    • 23. Perl AE, Martinelli G, Neubauer A et al. Long-term survivors and gilteritinib safety beyond one year in FLT3-mutated R/R AML: ADMIRAL trial follow-up [abstract]. J. Clin. Oncol. 38(Suppl. 15), 7514–7514 (2020).
    • 24. Altman JK, Perl AE, Cortes JE et al. Deep molecular response to gilteritinib to improve survival in FLT3 mutation-positive relapsed/refractory acute myeloid leukemia [abstract]. J. Clin. Oncol. 35(Suppl. 15), 7003–7003 (2017).
    • 25. Levis M, Altman J, Perl A et al. Evaluation of the impact of signal ratio on overall survival in FLT3-mutation-positive relapsed/refractory acute myeloid leukemia following once-daily treatment with gilteritinib [abstract]. Haematologica (102), 216–217 (2017).
    • 26. Kim RS, Yaghy A, Wilde LR, Shields CL. An iridociliochoroidal myeloid sarcoma associated with relapsed acute myeloid leukemia with FLT3-ITD mutation, treated with gilteritinib, an FLT3 inhibitor. JAMA Ophthalmol. 138(4), 418–419 (2020).
    • 27. Canaani J, Rea B, Sargent R et al. Differentiation response to gilteritinib (ASP2215) in relapsed/refractory FLT3 mutated acute myeloid leukemia patients is associated with co-mutations in NPM1 and DNMT3A [abstract]. Haematologica 101, 42 (2016).
    • 28. McMahon CM, Canaani J, Rea B et al. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv. 3(10), 1581–1585 (2019).
    • 29. Yun HD, Nathan S, Larson M et al. Erythroid differentiation of myeloblast induced by gilteritinib in relapsed FLT3-ITD-positive acute myeloid leukemia. Blood Adv. 3(22), 3709–3712 (2019).
    • 30. Yong A, Chandran N. Mucocutaneous Sweet syndrome associated with the FLT3-inhibitor gilteritinib. Br. J. Dermatol. 181, 134 (2019).
    • 31. Levis M, Smith C, Litzow M et al. Drug-drug interaction potential of gilteritinib in healthy subjects and patients with relapsed/refractory acute myeloid leukemia [abstract]. Haematologica 102, 386 (2017).
    • 32. Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: role of the pharmacist in risk assessment, prevention and management. Canadian Pharmacists Association 149(3), 139–152 (2016).
    • 33. Lam SSY, Leung AYH. Overcoming resistance to FLT3 inhibitors in the treatment of flt3-mutated aml. Int. J. Mol. Sci. 21(4), 1537 (2020). • Discusses the resistance mechanisms which play a role in FLT3 inhibitor resistance.
    • 34. McMahon CM, Canaani J, Rea B et al. Mechanisms of acquired resistance to gilteritinib therapy in relapsed and refractory FLT3-mutated acute myeloid leukemia [abstract]. Blood 130(Suppl. 1), 295–295 (2017).
    • 35. McMahon CM, Ferng T, Canaani J et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 9(8), 1050–1063 (2019). • Highlights the emergence of treatment-emergent mutations that activate RAS/MAPK pathway after use of gilteritinib leading to resistance.
    • 36. Wei AH, Roberts AW. Polyclonal heterogeneity: the new norm for secondary clinical resistance to targeted monotherapy in relapsed leukemia? Cancer Discov. 9(8), 998–1000 (2019).
    • 37. Smith CC, Levis MJ, Perl AE et al. Emerging mutations at relapse in patients with FLT3-mutated relapsed/refractory acute myeloid leukemia who received gilteritinib therapy in the Phase III Admiral Trial [abstract]. Blood 134(Suppl. 1), 14–14 (2019).
    • 38. Hayashi M, Kikushige Y, Harada T, Miyamoto T, Maeda T, Akashi K. Somatic mutations potentiating RAS-MAPK signaling confer resistant potential against FLT3-inhibitors to acute myelogenous leukemia [abstract]. Blood 134(Suppl. 1), 910–910 (2019).
    • 39. Cella D, Ritchie EK, Fabbiano F et al. The relationship between transplant status and patient-reported outcomes in patients with FLT3-mutated relapsed/refractory (R/R) acute myeloid leukemia (AML): results from the phase III admiral study [abstract]. Blood 134(Suppl. 1), 3850–3850 (2019).
    • 40. Cella D, Ritchie E, Fabbiano F et al. PCN485 patient-reported outcomes and their relationship with clinical outcomes in patients with FLT3-mutated (FLT3MUT+) relapsed/refractory (R/R) acute myeloid leukemia (AML): results from the Phase III Admiral Study [abstract]. Value Heal. 22, S531–S531 (2019).
    • 41. Ritchie EK, Cella D, Fabbiano F et al. The relationship between hospitalization and patient-reported outcomes (PROs) in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML): results from the phase III admiral study [abstract]. Blood 134(Suppl. 1), 1332–1332 (2019).
    • 42. Cortes JE, Altman J, Ritchie EK et al. A Phase II/III, multicenter, open-label, 3-arm study of gilteritinib, gilteritinib plus azacitidine, or azacitidine alone in the treatment of newly diagnosed FLT3 mutation-positive acute myeloid leukemia (AML) patients ineligible for intensive induction chemotherapy [abstract]. J. Clin. Oncol. 35(15), TPS7068–TPS7068 (2017).
    • 43. Pratz K, Cherry M, Altman JK et al. Preliminary results from a Phase I study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia (AML) [abstract]. Blood 130(Suppl. 1), 564–564 (2017).
    • 44. Luger SM, Sun Z, Loghavi S et al. Phase II randomized trial of gilteritinib vs midostaurin in newly diagnosed FLT3 mutated acute myeloid leukemia (AML) [abstract]. Blood 134(Suppl. 1), 1309–1309 (2019).
    • 45. Levis MJ, Hamadani M, Logan BR et al. BMT CTN protocol 1506: a phase III trial of gilteritinib as maintenance therapy after allogeneic hematopoietic stem cell transplantation in patients with FLT3-ITD+ AML [abstract]. Blood 134(Suppl. 1), 4602–4602 (2019).
    • 46. Perl AE, Daver NG, Pratz KW et al. Venetoclax in combination with gilteritinib in patients with relapsed/refractory acute myeloid leukemia: a Phase 1B study [abstract]. Blood 134(Suppl. 1), 3910–3910 (2019).