We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

GammaTile®: Surgically targeted radiation therapy for glioblastomas

    Dominic J Gessler

    Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA

    ,
    Clara Ferreira

    Department of Radiation Oncology, University of Minnesota, MN 55455, USA

    ,
    Kathryn Dusenbery

    Department of Radiation Oncology, University of Minnesota, MN 55455, USA

    &
    Clark C Chen

    *Author for correspondence: Tel.: +1 612 624 1207;

    E-mail Address: ccchen@umn.edu

    Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA

    Published Online:https://doi.org/10.2217/fon-2020-0558

    Glioblastoma is the most common primary malignant neoplasm of the central nervous system in adults. Standard of care is resection followed by chemo-radiation therapy. Despite this aggressive approach, >80% of glioblastomas recur in proximity to the resection cavity. Brachytherapy is an attractive strategy for improving local control. GammaTile® is a newly US FDA-cleared device which incorporates 131Cs radiation emitting seeds in a resorbable collagen-based carrier tile for surgically targeted radiation therapy to achieve highly conformal radiation at the time of surgery. Embedding encapsulated 131Cs radiation emitter seeds in collagen-based tiles significantly lowers the technical barriers associated with traditional brachytherapy. In this review, we highlight the potential of surgically targeted radiation therapy and the currently available data for this novel approach.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Heron M. Deaths: leading causes for 2017. Natl Vital Stat. Rep. 66(5), 1–76 (2019).
    • 2. Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
    • 3. Ostrom QT, Gittleman H, Xu J et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-oncology 18(Suppl. 5), v1–v75 (2016).
    • 4. Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
    • 5. Stupp R, Taillibert S, Kanner A et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318(23), 2306–2316 (2017). •• Demonstrates extension of overall survival with the use of tumor treating fields.
    • 6. Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
    • 7. Ogura K, Mizowaki T, Arakawa Y et al. Initial and cumulative recurrence patterns of glioblastoma after temozolomide-based chemoradiotherapy and salvage treatment: a retrospective cohort study in a single institution. Radiat. Oncol. 8(1), 97 (2013).
    • 8. Gaspar LE, Fisher BJ, Macdonald DR et al. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int. J. Radiat. Oncol. Biology Phys. 24(1), 55–57 (1992).
    • 9. Petrecca K, Guiot M-C, Panet-Raymond V, Souhami L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neurooncol. 111(1), 19–23 (2012).
    • 10. Nagashima G, Suzuki R, Hokaku H et al. Graphic analysis of microscopic tumor cell infiltration, proliferative potential and vascular endothelial growth factor expression in an autopsy brain with glioblastoma. Surg. Neurol. 51(3), 292–299 (1999).
    • 11. Pirzkall A, McGue C, Saraswathy S et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro-oncology 11(6), 842–852 (2009).
    • 12. Pennington C, Kilbride L, Grant R, Wardlaw JM. A pilot study of brain tumour growth between radiotherapy planning and delivery. Clin. Oncol. 18(2), 104–108 (2006).
    • 13. Waters JD, Rose B, Gonda DD et al. Immediate postoperative brachytherapy prior to irradiation and temozolomide for newly diagnosed glioblastoma. J. Neurooncol. 113(3), 467–477 (2013). •• Demonstrates safety of radioactive seed implantation in combination with adjuvant chemoradiation therapy as an outlook for possible future combination of different therapies.
    • 14. Buszek SM, Feghali KAA, Elhalawani H, Chevli N, Allen PK, Chung C. Optimal timing of radiotherapy following gross total or subtotal resection of glioblastoma: a real-world assessment using the National Cancer Database. Sci. Rep. 10(1), 4926 (2020).
    • 15. Han SJ, Rutledge WC, Molinaro AM et al. The effect of timing of concurrent chemoradiation in patients with newly diagnosed glioblastoma. Neurosurgery 77(2), 248–53 (2015).
    • 16. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Radiat. Oncol. Biology Phys. 16(6), 1405–1409 (1989).
    • 17. Sneed PK, Gutin PH, Larson DA et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int. J. Radiat. Oncol. Biology Phys. 29(4), 719–727 (1994).
    • 18. Wernicke AG, Yondorf MZ, Peng L et al. Phase I/II study of resection and intraoperative cesium-131 radioisotope brachytherapy in patients with newly diagnosed brain metastases. J. Neurosurg. 121(2), 338–348 (2014).
    • 19. Wernicke AG, Taube S, Smith AW, Parashar B. Central nervous system brachytherapy. In: Handbook of Image-Guided Brachytherapy. Mayadev JBenedict SKamrava M (Eds). Springer, Cham, Switzerland, 539–556 (2017).
    • 20. Gupta VK. Brachytherapy – past, present and future. J. Med. Phys. 20, 31–38 (1995).
    • 21. Jiang P, Geenen M, Siebert F-A et al. Efficacy and the toxicity of the interstitial high-dose-rate brachytherapy in the management of recurrent keloids: 5-year outcomes. Brachytherapy 17(3), 597–600 (2018).
    • 22. Langley SEM, Laing RW. Iodine seed prostate brachytherapy: an alternative first-line choice for early prostate cancer. Prostate Cancer Prostatic Dis. 7(3), 201–207 (2004).
    • 23. Diener-West M, Earle JD, Fine SL et al. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. Arch. Ophthalmol. 119(7), 969 (2001).
    • 24. Henschke UK, Lawrence DC. Cesium-131 seeds for permanent implants. Radiology 85(6), 1117–1119 (1965).
    • 25. Chiu-Tsao S-T, Napoli JJ, Davis SD, Hanley J, Rivard MJ. Dosimetry for 131Cs and 125I seeds in solid water phantom using radiochromic EBT film. Appl. Radiat. Isotopes 92, 102–114 (2014).
    • 26. Shrieve DC, Loeffler JS. Advances in radiation therapy for brain tumors. Neurol. Clin. 13(4), 773–793 (1995).
    • 27. Lodge WO. Treatment of intrasellar tumours by radon. BMJ 2(3963), 1257–1258 (1936).
    • 28. Gutin PH, Phillips TL, Hosobuchi Y et al. Permanent and removable implants for the brachytherapy of brain tumors. Int. J. Radiat. Oncol. Biology Phys. 7(10), 1371–1381 (1981).
    • 29. Prados M, Leibel S, Barnett CM, Gutin P. Interstitial brachytherapy for metastatic brain tumors. Cancer 63(4), 657–660 (1989).
    • 30. Ruge MI, Kocher M, Maarouf M et al. Comparison of stereotactic brachytherapy (125 iodine seeds) with stereotactic radiosurgery (LINAC) for the treatment of singular cerebral metastases. Strahlenther. Onkol. 187(1), 7–14 (2010).
    • 31. Petr MJ, McPherson CM, Breneman JC, Warnick RE. Management of newly diagnosed single brain metastasis with surgical resection and permanent I-125 seeds without upfront whole brain radiotherapy. J. Neurooncol. 92(3), 393–400 (2009).
    • 32. Ruge MI, Suchorska B, Maarouf M et al. Stereotactic 125iodine brachytherapy for the treatment of singular brain metastases: closing a gap? Neurosurgery 68(5), 1209–18 (2011).
    • 33. Wernicke AG, Lazow SP, Taube S et al. Surgical technique and clinically relevant resection cavity dynamics following implantation of cesium-131 brachytherapy in patients with brain metastases. Oper. Neurosurg. 12(1), 49–60 (2015).
    • 34. Han DY, Ma L, Braunstein S, Raleigh D, Sneed PK, McDermott M. Resection cavity contraction effects in the use of radioactive sources (1–25 versus Cs-131) for intra-operative brain implants. Cureus 10(1), e2079 (2018).
    • 35. Armpilia CI, Dale RG, Coles IP, Jones B, Antipas V. The determination of radiobiologically optimized half-lives for radionuclides used in permanent brachytherapy implants. Int. J. Radiat. Oncol. Biology Phys. 55(2), 378–385 (2003).
    • 36. Murphy MK, Piper RK, Greenwood LR et al. Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy. Med. Phys. 31(6), 1529–1538 (2004).
    • 37. Bashir R, Hochberg F, Oot R. Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 23(1), 27–30 (1988).
    • 38. Gutin PH, Leibel SA, Wara WM et al. Recurrent malignant gliomas: survival following interstitial brachytherapy with high-activity iodine-125 sources. J. Neurosurg. 67(6), 864–873 (1987).
    • 39. Laperriere NJ, Leung PMK, McKenzie S et al. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int. J. Radiat. Oncol. Biology Phys. 41(5), 1005–1011 (1998).
    • 40. Selker RG, Shapiro WR, Burger P et al. The brain tumor cooperative group NIH trial 87-01: a randomized comparison of surgery, external radiotherapy and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy and carmustine. Neurosurgery 51(2), 343 (2002).
    • 41. Ribas A, Hamid O, Daud A et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315(15), 1600 (2016).
    • 42. Westphal M, Hilt DC, Bortey E et al. A Phase III trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncology 5(2), 79–88 (2003). • Suggests benefit of locally applied chemotherapy as a potential option.
    • 43. Siddiqi SN, Provias J, Laperriere N, Bernstein M. Effects of iodine-125 brachytherapy on the proliferative capacity and histopathological features of glioblastoma recurring after initial therapy. Neurosurgery 40(5), 910–918 (1997).
    • 44. Welsh J, Sanan A, Gabayan AJ et al. GliaSite brachytherapy boost as part of initial treatment of glioblastoma multiforme: a retrospective multi-institutional pilot study. Int. J. Radiat. Oncol. Biology Phys. 68(1), 159–165 (2007).
    • 45. Brachman DG, Youssef E, Dardis CJ et al. Resection and permanent intracranial brachytherapy using modular, biocompatible cesium-131 implants: results in 20 recurrent, previously irradiated meningiomas. J. Neurosurg. 131(6), 1819–1828 (2019).
    • 46. Brachman D, Youssef E, Dardis C, Smith K, Pinnaduwage D, Nakaji P. Surgically targeted radiation therapy: safety profile of collagen tile brachytherapy in 79 recurrent, previously irradiated intracranial neoplasms on a prospective clinical trial. Brachytherapy 18(3), S35–S36 (2019). •• Study suggests potential benefit of GammaTile® for the treatment of several brain neoplasms.
    • 47. Wernicke AG, Hirschfeld CB, Smith AW et al. Clinical outcomes of large brain metastases treated with neurosurgical resection and intraoperative cesium-131 brachytherapy: results of a prospective trial. Int. J. Radiat. Oncol. Biology Phys. 98(5), 1059–1068 (2017).
    • 48. Wernicke AG, Smith AW, Taube S et al. Cesium-131 brachytherapy for recurrent brain metastases: durable salvage treatment for previously irradiated metastatic disease. J. Neurosurg. 126(4), 1212–1219 (2017).
    • 49. Pham A, Yondorf MZ, Parashar B et al. Neurocognitive function and quality of life in patients with newly diagnosed brain metastasis after treatment with intra-operative cesium-131 brachytherapy: a prospective trial. J. Neurooncol. 127(1), 63–71 (2015).
    • 50. Youssef E, Nakaji P, Thomas T, McBride H, Fram E, Brachman D. SCDT-36. Novel modular, permanently implanted collagen-based device for intraoperative brachytherapy in patients with central nervous system tumors. Neuro-oncology 19(Suppl. 6), vi272–vi272 (2017).
    • 51. Rivard MJ. Brachytherapy dosimetry parameters calculated for a 131Cs source. Med. Phys. 34(2), 754–762 (2007).
    • 52. Chitti B, Goyal S, Sherman JH et al. The role of brachytherapy in the management of brain metastases: a systematic review. J. Contemp. Brachyther. 12(1), 67–83 (2020).
    • 53. Vitaz TW, Warnke PC, Tabar V, Gutin PH. Brachytherapy for brain tumors. J. Neurooncol. 73(1), 71–86 (2005).
    • 54. Ferreira C, Alaei P, Chen C, Reynolds M, Sterling D, Dusenbery K. RTHP-32. First experience with gammatile permanent implants for recurrent brain tumors. Neuro-oncology 21(Suppl. 6), vi216–vi216 (2019).
    • 55. D P, S S, E Y et al. “Dosimetric impact of source migration and decay based on radioisotope type in collagen carrier brain brachytherapy implants”. Med. Phys. e244(45), (2018).
    • 56. Ardizzone L, Barber T, Drebin J et al. Cancer surgery and COVID19. Ann. Surg. Oncol. 27(6), 1713–1716 (2020).
    • 57. Raizer JJ, Fitzner KA, Jacobs DI et al. Economics of malignant gliomas: a critical review. J. Oncol. Pract. Am. Soc. Clin. Oncol. 11(1), e59–e65 (2014).
    • 58. Yondorf MZ, Parashar B, Sabbas A et al. Radiation exposure after neurosurgical resection and permanent intraoperative cesium-131 radio-isotope brachytherapy in patients with brain tumors. Brachytherapy 13, S109–S110 (2014).
    • 59. Champeaux C, Weller J. Implantation of carmustine wafers (Gliadel®) for high-grade glioma treatment. A 9-year nationwide retrospective study. J. Neurooncol. 147(1), 159–169 (2020).
    • 60. Ko A, Fink K, Stelzer K, Silbergeld D. Safety and efficacy of concomitant chemotherapeutic wafers and iodine-125 seeds for recurrent glioblastoma. Surg. Neurology Int. 3(1), 137 (2012).
    • 61. Drumm MR, Dixit KS, Grimm S et al. Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro-oncology 22(4), 470–479 (2020). • Highlights glioblastoma invasion of brain stem.
    • 62. Chen AM, Chang S, Pouliot J et al. Phase I trial of gross total resection, permanent iodine-125 brachytherapy and hyperfractionated radiotherapy for newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biology Phys. 69(3), 825–830 (2007).
    • 63. Archavlis E, Tselis N, Birn G, Ulrich P, Zamboglou N. Salvage therapy for recurrent glioblastoma multiforme: a multimodal approach combining fluorescence-guided resurgery, interstitial irradiation and chemotherapy. Neurol. Res. 36(12), 1047–1055 (2014).