We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Niraparib in the treatment of previously treated advanced ovarian, fallopian tube or primary peritoneal cancer

    BJ Rimel

    Cedars-Sinai Medical Center, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Los Angeles, CA 90048, USA

    ,
    Lauren Dockery

    University of North Carolina at Chapel Hill, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Chapel Hill, NC 27599, USA

    ,
    Leslie M Randall

    Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA

    &
    Kathleen Moore

    *Author for correspondence:

    E-mail Address: kathleen-moore@ouhsc.edu

    The Stephenson Cancer Center, The University of Oklahoma, Oklahoma City, OK 73104, USA

    Published Online:https://doi.org/10.2217/fon-2020-0538

    Homologous recombination deficiency is a critical biologic feature of ovarian cancer. This weakness in DNA damage repair relies on functional poly(ADP-ribose) polymerase. Niraparib is a poly(ADP-ribose) polymerase inhibitor, orally available and initially approved for maintenance therapy in women with ovarian cancer by the US FDA in 2017 and by the EMA in 2017 for the same indication. Ovarian cancer represents the most lethal of gynecologic malignancies. The efficacy of niraparib has changed the landscape of ovarian cancer treatment, but overall survival data is still to come. This review summarizes the data regarding niraparib mechanism of action, toxicities, single agent efficacy and novel combinations in ovarian cancer.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. U.S. Cancer Statistics Working Group. US Cancer Statistics Data Visualizations Tool, based on November 2018 submission data (1999–2016). (2019). www.cdc.gv/cancer/dataviz
    • 2. Erickson BK, Conner MG, Landen CN Jr. The role of the fallopian tube in the origin of ovarian cancer. Am. J. Obstet. Gynecol. 209(5), 409–414 (2013).
    • 3. Boussios S, Abson C, Moschetta M et al. Poly (ADP-ribose) polymerase inhibitors: talazoparib in ovarian cancer and beyond. Drugs R. D. 20(2), 55–73 (2020).
    • 4. FDA label for olaparib (2020). www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1
    • 5. FDA approval for rubraca. www.accessdata.fda.gov/drugsatfda_docs/label/2018/209115s003lbl.pdf
    • 6. Karihtala P, Moschetta M et al. Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Invest. New Drugs 38(1), 181–193 (2020).
    • 7. Gourley C, Balmaña J, Ledermann JA et al. Moving from poly (ADP-ribose) polymerase inhibition to targeting dna repair and dna damage response in cancer therapy. J. Clin. Oncol. 37(25), 2257–2269 (2019).
    • 8. Friedberg EC. A brief history of the DNA repair field. Cell Res. 18(1), 3–7 (2008).
    • 9. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5(11), 1137–1154 (2015).
    • 10. Karnak D, Engelke CG, Parsels LA et al. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin. Cancer Res. 20(19), 5085–5096 (2014).
    • 11. Patel M, Nowsheen S, Maraboyina S, Xia F. The role of poly(ADP-ribose) polymerase inhibitors in the treatment of cancer and methods to overcome resistance: a review. Cell Biosci. 10, 35 (2020).
    • 12. O'Connor MJ. Targeting the DNA damage response in cancer. Mol. Cell. 60(4), 547–560 (2015).
    • 13. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 481(7381), 287–294 (2012).
    • 14. Lord CJ, Ashworth A. BRCAness revisited. Nat. Rev. Cancer. 16(2), 110–120 (2016).
    • 15. Jones P, Altamura S, Boueres J et al. Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem. 52(22), 7170–7185 (2009).
    • 16. van Andel L, Rosing H, Zhang Z et al. Determination of the absolute oral bioavailability of niraparib by simultaneous administration of a (14)C-microtracer and therapeutic dose in cancer patients. Cancer Chemother. Pharmacol. 81(1), 39–46 (2018).
    • 17. Sun K, Mikule K, Wang Z et al. A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models. Oncotarget 9(98), 37080–37096 (2018).
    • 18. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science 355(6330), 1152–1158 (2017).
    • 19. Sandhu SK, Schelman WR, Wilding G et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14(9), 882–892 (2013).
    • 20. Zhang ZY. Modeling and impact of organ function on the population pharmacokinetics (PK) of niraparib, a selective poly(ADP-ribose) polymerase (PARP)-1 and-2 inhibitor. Ann. Oncol. 28 (2017).
    • 21. Wang J. The exposure-response relationship of niraparib in patients with gBRCAmut and non-gBRCAmut: results from the ENGOT-OV16/NOVA trial. Ann. Oncol. 9, 28 (2017).
    • 22. Sachdev JC. Safety, pharmacodynamic, and pharmacokinetic profile of TSR-042, an anti-PD-1 monoclonal antibody, in patients (pts) with advanced solid tumors. Ann. Oncol. 28, 28 (2017).
    • 23. Mirza MR, Monk BJ, Herrstedt J et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375(22), 2154–2164 (2016). • First report of efficacy for Poly(ADP-ribose) polymerase inhibitor (PARPi) maintenance in the platinum sensitive recurrent setting.
    • 24. Moore KN, Secord AA, Geller MA et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, Phase II trial. Lancet Oncol. 20(5), 636–648 (2019). • Largest monotherapy trial of PARPi in later lines of therapy demonstrating continued efficacy in a platinum sensitive setting.
    • 25. González-Martín A, Pothuri B, Vergote I et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381(25), 2391–2402 (2019). • Demonstrates the efficacy of PARPi in front line maintenance, regardless of biomarker.
    • 26. Fabbro M, Moore KN, Dørum A et al. Efficacy and safety of niraparib as maintenance treatment in older patients (>/=70 years) with recurrent ovarian cancer: results from the ENGOT-OV16/NOVA trial. Gynecol. Oncol. 152(3), 560–567 (2019).
    • 27. FDA label for niraparib. www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf
    • 28. Berek JS, Matulonis UA, Peen U et al. Safety and dose modification for patients receiving niraparib. Ann. Oncol. 29(8), 1784–1792 (2018).
    • 29. Oza AM, Matulonis UA, Malander S et al. Quality of life in patients with recurrent ovarian cancer treated with niraparib versus placebo (ENGOT-OV16/NOVA): results from a double-blind, Phase III, randomised controlled trial. Lancet Oncol. 19(8), 1117–1125 (2018).
    • 30. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16(2), 81–104 (2019).
    • 31. Lu Y, Chu A, Turker MS, Glazer PM. Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol. Cell. Biol. 31(16), 3339–3350 (2011).
    • 32. Scanlon SE, Glazer PM. Hypoxic stress facilitates acute activation and chronic downregulation of fanconi anemia proteins. Mol. Cancer Res. 12(7), 1016–1028 (2014).
    • 33. Bindra RS, Schaffer PJ, Meng A et al. Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol. Cell. Biol. 24(19), 8504–8518 (2004).
    • 34. Wang Z, Sun K, Xiao Y et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci. Rep. 9(1), 1853 (2019).
    • 35. Sato H, Niimi A, Yasuhara T et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 8(1), 1751 (2017).
    • 36. Jiao S, Xia W, Yamaguchi H et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 23(14), 3711–3720 (2017).
    • 37. Shen J, Zhao W, Ju Z et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79(2), 311–319 (2019).
    • 38. Mirza MR, Birrer MJ, Christensen Rd et al. A Phase I study of bevacizumab in combination with niraparib in patients with platinum-sensitive epithelial ovarian cancer: The ENGOT-OV24/AVANOVA1 trial. J. Clin. Oncol. 34, 5555 (2016).
    • 39. Mirza MR, Åvall-Lundqvist E, Birrer MJ et al. Niraparib plus bevacizumab versus niraparib alone for platinum-sensitive recurrent ovarian cancer (NSGO-AVANOVA2/ENGOT-ov24): a randomised, Phase II, superiority trial. Lancet Oncol. 20(10), 1409–1419 (2019).
    • 40. Liu JF, Brady M, Matulonis UA et al. A Phase III study comparing single-agent olaparib or the combination of cediranib and olaparib to standard platinum-based chemotherapy in recurrent platinum-sensitive ovarian cancer. J. Clin. Oncol. 38(Suppl. abstr. 6003), (2020).
    • 41. Konstantinopoulos PA, Waggoner SE, Vidal GA et al. TOPACIO/Keynote-162 (NCT02657889)L a Phase 1/2 study of niraparib+pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC) – Results from ROC cohort. J. Clin. Oncol. 36(Suppl. 15), 106 (2018).
    • 42. Bitler BG, Watson ZL, Wheeler LJ, Behbakht K. PARP inhibitors: clinical utility and possibilities of overcoming resistance. Gynecol. Oncol. 147(3), 695–704 (2017).
    • 43. Lin KK, Harrell MI, Oza AM et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 9(2), 210–219 (2019).
    • 44. Kondrashova O, Topp M, Nesic K et al. Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nat. Commun. 9(1), 3970 (2018).
    • 45. Moiseeva TN, Qian C, Sugitani N, Osmanbeyoglu HU, Bakkenist CJ. WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1- and S-phase cells. Proc. Natl Acad. Sci. USA 116(48), 23891–23893 (2019).
    • 46. Quigley D, Alumkal JJ, Wyatt AW et al. Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 7(9), 999–1005 (2017).
    • 47. Tapodi A, Debreceni B, Hanto K et al. Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J. Biol. Chem. 280(42), 35767–35775 (2005).
    • 48. Konstantinopoulos PA, Barry WT, Birrer M et al. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion Phase 1b trial. Lancet Oncol. 20(4), 570–580 (2019).