We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Belantamab mafodotin in the treatment of relapsed or refractory multiple myeloma

    Semira Sheikh

    Department of Medicine, Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, M5G2C1, Canada

    Authors contributed equally

    Search for more papers by this author

    ,
    Eyal Lebel

    Department of Medicine, Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, M5G2C1, Canada

    Authors contributed equally

    Search for more papers by this author

    &
    Suzanne Trudel

    *Author for correspondence: Tel: +1 416 946 4566; Fax: +1 416 946 4563;

    E-mail Address: suzanne.trudel@uhn.ca

    Department of Medicine, Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, M5G2C1, Canada

    Published Online:https://doi.org/10.2217/fon-2020-0521

    Multiple myeloma remains an incurable disease, with a large proportion of patients in the relapsed/refractory setting often unable to achieve durable responses. Novel, well-tolerated and highly effective therapies in this patient population represent an unmet need. Preclinical studies have shown that B-cell maturation antigen is nearly exclusively expressed on normal and malignant plasma cells, thereby identifying it as a highly selective target for immunotherapeutic approaches. Belantamab mafodotin (GSK2857916, belamaf) is a first-in-class antibody–drug conjugate directed at B-cell maturation antigen and has shown promising activity in clinical trials. In this review, we provide an overview of belantamab mafodotin as a compound and present the available clinical efficacy and safety data in the treatment of relapsed/refractory multiple myeloma.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Mikhael J, Ismaila N, Cheung MC et al. Treatment of multiple myeloma: ASCO and CCO joint clinical practice guideline. J. Clin. Oncol. 37(14), 1228–1263 (2019).
    • 2. Swerdlow SH, Campo E, Harris NL et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. International Agency for Research on Cancer (IARC) Publications, Lyon, France (2017).
    • 3. Lonial S, Lee HC, Badros A et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, Phase II study. Lancet Oncol. 21(2), 207–221 (2020). •• Presents DREAMM-2 Phase II trial data.
    • 4. Trudel S, Lendvai N, Popat R et al. Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion Phase I trial. Lancet Oncol. 19(12), 1641–1653 (2018). •• Presenting belamaf Phase I data.
    • 5. Trudel S, Lendvai N, Popat R et al. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: an update on safety and efficacy from dose expansion Phase I study. Blood Cancer J. 9(4), 37 (2019).
    • 6. Kumar SK, Dimopoulos MA, Kastritis E et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study. Leukemia 31(11), 2443–2448 (2017).
    • 7. Kumar SK, Rajkumar V, Kyle RA et al. Multiple myeloma. Nat. Rev. Dis. Primers 3, 17046 (2017).
    • 8. Gandhi UH, Cornell RF, Lakshman A et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 33(9), 2266–2275 (2019).
    • 9. Chauhan D, Singh AV, Brahmandam M et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16(4), 309–323 (2009).
    • 10. Mahnke K, Ring S, Johnson TS et al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur. J. Immunol. 37(8), 2117–2126 (2007).
    • 11. Neri P, Bahlis NJ, Lonial S. New strategies in multiple myeloma: immunotherapy as a novel approach to treat patients with multiple myeloma. Clin. Cancer Res. 22(24), 5959–5965 (2016).
    • 12. Ray A, Das DS, Song Y et al. Targeting PD1–PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 29(6), 1441–1444 (2015).
    • 13. Rutella S, Locatelli F. Targeting multiple-myeloma-induced immune dysfunction to improve immunotherapy outcomes. Clin. Dev. Immunol. 2012, 196063 (2012).
    • 14. Casneuf T, Adams HC, van De Donk N et al. Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemia doi:10.1038/s41375-020-0855-4 (2020) (Epub ahead of print).
    • 15. Krejcik J, Casneuf T, Nijhof IS et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion and skews T-cell repertoire in multiple myeloma. Blood 128(3), 384–394 (2016).
    • 16. Dimopoulos MA, Dytfeld D, Grosicki S et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med. 379(19), 1811–1822 (2018).
    • 17. Dimopoulos MA, Lonial S, Betts KA et al. Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial. Cancer 124(20), 4032–4043 (2018).
    • 18. Dimopoulos MA, Oriol A, Nahi H et al. Daratumumab, lenalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med. 375(14), 1319–1331 (2016).
    • 19. Dimopoulos MA, San-Miguel J, Belch A et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of POLLUX. Haematologica 103(12), 2088–2096 (2018).
    • 20. Lonial S, Dimopoulos M, Palumbo A et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 373(7), 621–631 (2015).
    • 21. Lonial S, Weiss BM, Usmani SZ et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, Phase II trial. Lancet 387(10027), 1551–1560 (2016).
    • 22. Palumbo A, Chanan-Khan A, Weisel K et al. Daratumumab, bortezomib and dexamethasone for multiple myeloma. N. Engl. J. Med. 375(8), 754–766 (2016).
    • 23. Spencer A, Lentzsch S, Weisel K et al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR. Haematologica 103(12), 2079–2087 (2018).
    • 24. Attal M, Richardson PG, Rajkumar SV et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, Phase III study. Lancet 394(10214), 2096–2107 (2019).
    • 25. Hsi ED, Steinle R, Balasa B et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 14(9), 2775–2784 (2008).
    • 26. Leo R, Boeker M, Peest D et al. Multiparameter analyses of normal and malignant human plasma cells: CD38++, CD56+, CD54+, cIg+ is the common phenotype of myeloma cells. Ann. Hematol. 64(3), 132–139 (1992).
    • 27. Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K. Human CD38: a glycoprotein in search of a function. Immunol. Today 15(3), 95–97 (1994).
    • 28. Bonello F, Mina R, Boccadoro M, Gay F. Therapeutic monoclonal antibodies and antibody products: current practices and development in multiple myeloma. Cancers (Basel) 12(1), 15–39 (2019).
    • 29. Sanchez E, Li M, Kitto A et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br. J. Haematol. 158(6), 727–738 (2012).
    • 30. Claudio JO, Masih-Khan E, Tang H et al. A molecular compendium of genes expressed in multiple myeloma. Blood 100(6), 2175–2186 (2002).
    • 31. Tai YT, Li XF, Breitkreutz I et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 66(13), 6675–6682 (2006).
    • 32. Rennert P, Schneider P, Cachero TG et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J. Exp. Med. 192(11), 1677–1684 (2000).
    • 33. Hengeveld PJ, Kersten MJ. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy? Blood Cancer J. 5, e282 (2015).
    • 34. Moreaux J, Legouffe E, Jourdan E et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103(8), 3148–3157 (2004).
    • 35. Peperzak V, Vikstrom I, Walker J et al. Mcl-1 is essential for the survival of plasma cells. Nat. Immunol. 14(3), 290–297 (2013).
    • 36. Shaffer AL, Emre NC, Lamy L et al. IRF4 addiction in multiple myeloma. Nature 454(7201), 226–231 (2008).
    • 37. Shen X, Zhang X, Xu G, Ju S. BAFF-R gene induced by IFN-gamma in multiple myeloma cells is related to NF-kappaB signals. Cell Biochem. Funct. 29(6), 513–520 (2011).
    • 38. Shen X, Zhu W, Zhang X, Xu G, Ju S. A role of both NF-kappaB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells. Mol. Cell. Biochem. 357(1–2), 21–30 (2011).
    • 39. Salem DA, Maric I, Yuan CM et al. Quantification of B-cell maturation antigen, a target for novel chimeric antigen receptor T-cell therapy in Myeloma. Leuk. Res. 71, 106–111 (2018).
    • 40. Carpenter RO, Evbuomwan MO, Pittaluga S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19(8), 2048–2060 (2013).
    • 41. Tai YT, Mayes PA, Acharya C et al. Novel anti-B-cell maturation antigen antibody–drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 123(20), 3128–3138 (2014).
    • 42. Tai YT, Acharya C, An G et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 127(25), 3225–3236 (2016). •• Presents preclinical data for GSK2857916.
    • 43. Ghermezi M, Li M, Vardanyan S et al. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients. Haematologica 102(4), 785–795 (2017).
    • 44. Sanchez E, Smith EJ, Yashar MA et al. The role of B-cell maturation antigen in the biology and management of and as a potential therapeutic target in, multiple myeloma. Target Oncol. 13(1), 39–47 (2018).
    • 45. Sanchez E, Tanenbaum EJ, Patil S et al. The clinical significance of B-cell maturation antigen as a therapeutic target and biomarker. Expert Rev. Mol. Diagn. 18(4), 319–329 (2018).
    • 46. Sanchez E, Gillespie A, Tang G et al. Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin. Cancer Res. 22(13), 3383–3397 (2016).
    • 47. Topp MS, Duell J, Zugmaier G et al. Treatment with AMG 420, an anti-B-cell maturation antigen (BCMA) bispecific T-Cell engager (BiTE®) antibody construct, induces minimal residual disease (MRD) negative complete responses in relapsed and/or refractory (R/R) multiple myeloma (MM) patients: results of a first-in-human (FIH) Phase I dose escalation study. Am. Soc. Hematol. 132(S1), 1010 (2018).
    • 48. Topp MS, Duell J, Zugmaier G et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J. Clin. Oncol. 38(8), 775–783 (2020). • Presents Phase I data on anti-B-cell maturation antigen bispecific T-cell engager.
    • 49. Lesokhin AM, Raje N, Gasparetto CJ et al. A Phase I, open-label study to evaluate the safety, pharmacokinetic, pharmacodynamic and clinical activity of PF-06863135, a B-cell maturation antigen/CD3 bispecific antibody, in patients with relapsed/refractory advanced multiple myeloma. Am. Soc. Hematol. 132(S1), 3229 (2018).
    • 50. Munshi NC anderson LD, Shah N et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results. Am. Soc. Clin. Oncol. 38(Suppl. 15), 8504–8504 (2020). •• Presents Phase II data on anti-B-cell maturation antigen CAR T-cell therapy.
    • 51. Raje N, Berdeja J, Lin Y et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380(18), 1726–1737 (2019).
    • 52. Mailankody S, Jakubowiak A, Htut M et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the Phase I/II EVOLVE study (NCT03430011). Am. Soc. Clin. Oncol. 38(Suppl. 15), Abstract no. 8504 (2020).
    • 53. Mailankody S, Htut M, Lee KP et al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: initial proof of concept results from a Phase I/II multicenter study (EVOLVE). Am. Soc. Hematol. 132(S1), 957 (2018).
    • 54. Berdeja JG, Madduri D, Usmani S et al. Update of CARTITUDE-1: a Phase Ib/II study of JNJ-4528, a B-cell maturation antigen (BCMA)-directed CAR-T-cell therapy, in relapsed/refractory multiple myeloma. Am. Soc. Oncol. 38(Suppl. 15), 8505 (2020).
    • 55. Brudno JN, Maric I, Hartman SD et al. T Cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36(22), 2267–2280 (2018).
    • 56. Zhao WH, Liu J, Wang BY et al. A Phase I, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11(1), 141 (2018).
    • 57. Xu J, Chen LJ, Yang SS et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA 116(19), 9543–9551 (2019).
    • 58. Cohen AD, Garfall AL, Stadtmauer EA et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129(6), 2210–2221 (2019).
    • 59. Shah N, Alsina M, Siegel DS et al. Initial results from a Phase I clinical study of bb21217, a next-generation anti-BCMA CAR T therapy. Am. Soc. Hematol. 132(S1), 488 (2018).
    • 60. Mailankody S, Ghosh A, Staehr M et al. Clinical responses and pharmacokinetics of MCARH171, a human-derived bcma targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a Phase I clinical trial. Am. Soc. Hematol. 132(S1), 959 (2018).
    • 61. Liu Y, Chen Z, Fang H et al. Durable remission achieved from BCMA-directed CAR-T therapy against relapsed or refractory multiple myeloma. Am. Soc. Hematol. 132(S1), 956 (2018).
    • 62. Li C, Wang Q, Zhu H et al. T cell expressing anti B-Cell maturation antigen chimeric antigen receptors for plasma cell malignancies. Am. Soc. Hematol. 132(S1), 1013 (2018).
    • 63. Jie J, Hao S, Jiang S et al. Phase I trial of the safety and efficacy of fully human anti-BCMA CAR T cells in relapsed/refractory multiple myeloma. Am. Soc. Hematol. 134(S1), 4435 (2019).
    • 64. Gregory T, Cohen AD, Costello CL, Al E. Efficacy and safety of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM). Am. Soc. Hematol. 132(S1), 1012 (2018).
    • 65. Green DJ, Pont M, Sather BD et al. Fully human BCMA targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Am. Soc. Hematol. 132(S1), 1011 (2018).
    • 66. Han L, Gao Q, Zhou K et al. The Phase I clinical study of CART targeting BCMA with humanized alpaca-derived single-domain antibody as antigen recognition domain. Am. Soc. Clin. Oncol. 37(12), 2535 (2019).
    • 67. Li C, Zhou J, Wang J et al. Clinical responses and pharmacokinetics of fully human BCMA targeting CAR T-cell therapy in relapsed/refractory multiple myeloma. Am. Soc. Clin. Oncol. 37(15), 8013 (2019).
    • 68. Montes De Oca M, Bhattacharya S, Vitali N et al. The anti-BCMA antibody–drug conjugate GSK2857916 drives immunogenic cell death and immune-mediated anti-tumor responses and in combination with an OX40 agent potentiates in vivo activity. Presented at: European Haematology Association. Amsterdam, The Netherlands, June 13–16, 2019. • Describes immunogenic cell death as a mechanism of action of GSK2857916.
    • 69. Lonial S, Lee HC, Badros A et al. DREAMM-2: single-agent belantamab mafodotin in relapsed/refractory multiple myeloma refractory to proteasome inhibitors, immunomodulatory agents and refractory and/or intolerant to anti-CD38mAbs. Eur. Hematol. Assoc. Abstract no. EP970 (2020).
    • 70. Lonial S, Lee HC, Badros A, Al E. DREAMM-2: single-agent belantamab mafodotin in patients with relapsed/refractory multiple myeloma (RRMM) – outcomes by prior therapy. Eur. Hematol. Assoc. Abstract no. 3177 (2020).
    • 71. Lee HC, Cohen AD, Chari A et al. DREAMM-2: single-agent belantamab mafodotin (GSK2857916) in patients with relapsed/rfractory multiple myeloma (RRMM) and renal impairment. Eur. Hematol. Assoc. Abstract no. 2328 (2020).
    • 72. Cohen AD, Trudel S, Lonial S et al. DREAMM-2: Single-agent belantamab mafodotin (GSK2857916) in patients with relapsed/refractory multiple myeloma (RRMM) and high-risk (HR) cytogenetics. Eur. Hematol. Assoc. (38(Suppl. 15), 8541–8541 (2020).
    • 73. Eaton JS, Miller PE, Mannis MJ, Murphy CJ. Ocular adverse events associated with antibody–drug conjugates in human clinical trials. J. Ocul. Pharmacol. Ther. 31(10), 589–604 (2015). •• Describes ocular adverse events associated with administration of antibody–drug conjugates.
    • 74. Popat R, Warcel D, O'nions J et al. Characterisation of response and corneal events with extended follow-up after belantamab mafodotin (GSK2857916) monotherapy for patients with relapsed multiple myeloma: a case series from the first-time-in-human clinical trial. Haematologica 105(5), e261–e263 (2020).
    • 75. Popat R, Opalinska J, Eliason L et al. Patient reported experience from part 2 of the first time in human study of the BCMA antibody drug conjugate GSK2857916 for advanced relapsed refractory multiple myeloma (DREAMM-1). Eur. Hematol. Assoc. 3(S1), 643 (2019).
    • 76. Eliason L, Opalinska J, Martin ML, Correll J, Gutierrez B, Popat R. DREAMM-1: patient perspectives from the first-in-human study of single-agent belantamab mafodotin for relapsed and refractory multiple myeloma (RRMM). Am. Soc. Clin. Oncol. 38(Suppl. 15), Abstract no. e20531 (2020).
    • 77. Annunziata CM, Kohn EC, Lorusso P et al. Phase I, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. New Drugs 31(1), 77–84 (2013).
    • 78. Tannir NM, Forero-Torres A, Ramchandren R et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest. New Drugs 32(6), 1246–1257 (2014).
    • 79. Thompson JA, Motzer RJ, Molina AM et al. Phase I trials of anti-ENPP3 antibody-drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res. 24(18), 4399–4406 (2018).
    • 80. Thompson JA, Forero-Torres A, Heath EI et al. The effect of SGN-75, a novel antibody–drug conjugate (ADC), in treatment of patients with renal cell carcinoma (RCC) or non-Hodgkin lymphoma (NHL): a Phase I study. J. Clin. Oncol. 29(Suppl. 15), 3071 (2011).
    • 81. Fathi AT, Chen R, Trippett TM et al. Interim analysis of a Phase I study of the antibody–drug conjugate SGN-CD19A in relapsed or refractory B-lineage acute leukemia and highly aggressive lymphoma. Blood 124(21), 963 (30 May–3 June 2014).
    • 82. Moskowitz CH, Forero-Torres A, Shah BD et al. Interim analysis of a Phase I study of the antibody–drug conjugate SGN-CD19A in relapsed or refractory b-lineage non-Hodgkin lymphoma. Presented at: Am. Soc. Clin. Oncol. IL, USA (30 May–3 June 2014).
    • 83. Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody–drug conjugates. MAbs 8(4), 659–671 (2016).
    • 84. Zhao H, Gulesserian S, Ganesan SK et al. Inhibition of megakaryocyte differentiation by antibody–drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopenia. Mol. Cancer Ther. 16(9), 1877–1886 (2017).
    • 85. Nooka A, Stockerl-Goldstein K, Quach H et al. DREAMM-6: safety and tolerability of belantamab mafodotin in combination with bortezomib/dexamethasone in relapsed/refractory multiple myeloma (RRMM). Am. Soc. Clin. Oncol. 15(Suppl. 38) Abstract no. 8502. (2020).
    • 86. Leonard JP, Jung SH, Johnson J et al. Randomized trial of lenalidomide alone versus lenalidomide plus rituximab in patients with recurrent follicular lymphoma: CALGB 50401 (alliance). J. Clin. Oncol. 33(31), 3635–3640 (2015).