We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Uncommon cytogenetic abnormalities identifying high-risk acute myeloid leukemia in children

    Riccardo Masetti

    Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    ,
    Salvatore Nicola Bertuccio

    *Author for correspondence: Tel.: +39 051 214 4464; Fax: +39 051 214 3400;

    E-mail Address: salvatore.bertuccio2@unibo.it

    Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    ,
    Vanessa Guidi

    Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    ,
    Sara Cerasi

    Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    ,
    Annalisa Lonetti

    Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    &
    Andrea Pession

    Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy

    Published Online:https://doi.org/10.2217/fon-2020-0505

    Pediatric acute myeloid leukemia (AML) represents an aggressive disease and is the leading cause of childhood leukemic mortality. The genomic landscape of pediatric AML has been recently mapped and redefined thanks to large-scale sequencing efforts. Today, understanding how to incorporate the growing list of genetic lesions into a risk stratification algorithm for pediatric AML is increasingly challenging given the uncertainty regarding the prognostic impact of rare lesions. Here we review some uncommon cytogenetic lesions to be considered for inclusion in the high-risk groups of the next pediatric AML treatment protocols. We describe their main clinical characteristics, biological background and outcome. We also provide some suggestions for the management of these rare but challenging patients and some novel targeted therapeutic options.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Zwaan CM, Kolb EA, Reinhardt D et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J. Clin. Oncol. 33(27), 2949–2962 (2015).
    • 2. Rasche M, Zimmermann M, Borschel L et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia 32(10), 2167–2177 (2018).
    • 3. Pession A, Masetti R, Rizzari C et al. Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood 122(2), 170–178 (2013).
    • 4. Buldini B, Maurer-Granofszky M, Varotto E, Dworzak MN. Flow-cytometric monitoring of minimal residual disease in pediatric patients with acute myeloid leukemia: recent advances and future strategies. Front. Pediatr. 11(7), 412 (2019).
    • 5. Buldini B, Rizzati F, Masetti R et al. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br. J. Haematol. 177(1), 116–126 (2017).
    • 6. Pession A, Lonetti A, Bertuccio S, Locatelli F, Masetti R. Targeting hedgehog pathway in pediatric acute myeloid leukemia: challenges and opportunities. Expert Opin. Ther. Targets 23(2), 87–91 (2019).
    • 7. Bolouri H, Farrar JE, Triche T et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24(1), 103–112 (2018).
    • 8. de Rooij JD, Masetti R, den van Heuvel-eibrink MM et al. Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood 127(26), 3424–3431 (2016).
    • 9. de Rooij JD, Branstetter C, Ma J et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat. Genet. 74(1), 27–34 (2017).
    • 10. Masetti R, Guidi V, Ronchini L, Bertuccio NS, Locatelli F, Pession A. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit. Rev. Oncol. Hematol. 138, 132–138 (2019).
    • 11. Inaba H, Zhou Y, Abla O et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 126(13), 1575–1584 (2015).
    • 12. Masetti R, Pigazzi M, Togni M et al. CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 121(17), 3469–3472 (2013). • Demonstrated for the first time that CBFA2T3-GLIS2 is a common fusion gene identified in 8.4% of cytogenetically normal acute myeloid leukemia (AML) and does not exclusively characterize pediatric non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL).
    • 13. de Rooij JD, Hollink I, Arentsen-peters S et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 27(12), 2280–2288 (2013). • First study identifying JARID1A (aka KDM5A) as a partner of NUP98 in AMKL pediatric patients.
    • 14. Schwartz S, Jiji R, Kerman S, Meekins J, Cohen MM. Translocation (6;9)(p23;q34) in acute nonlymphocytic leukemia. Cancer Genet. Cytogenet. 18(4), 133–138 (1983).
    • 15. Slovak M, Gundacker H, Bloomfield CD, Heerema NA. A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare ´poor prognosis´ myeloid malignancies. Leukemia 20(7), 1295–1297 (2006).
    • 16. Tarlock K, Todd A, Moraleda PP et al. Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is associated with poor outcome in childhood AML regardless of FLT3-ITD status: a report from the Children's Oncology Group. Br. J. Haematol. 166(2), 254–259 (2014). •• Provides conclusive data that pediatric AML patients with t(6;9) are at a high risk of relapse and have a poor outcome independent of the presence of FLT3-ITD; patients with t(6;9) who receive hematopoietic stem cell transplantation (HSCT) have a more favorable outcome.
    • 17. Sandahl JD, Coenen EA, Forestier E et al. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 99(5), 865–872 (2014). •• Provides conclusive data that pediatric AML patients with t(6;9) are at a high risk of relapse and have a poor outcome independent of the presence of FLT3-ITD; patients with t(6;9) who receive HSCT have a more favorable outcome.
    • 18. Panagopoulos I, Åman P, Fioretos T, Höglund M, Johansson B, Mitelman F. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 11(4), 256–262 (1994).
    • 19. Gamou T, Kitamura E, Hosoda F et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 91(11), 4028–4037 (1998).
    • 20. Noort S, Zimmermann M, Reinhardt D et al. Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM study group. Blood 132(15), 1584–1593 (2018). •• Showed that FUS-ERG-rearranged AML should be considered high-risk, whereas RUNX1-CBFA2T3-rearranged AML may benefit from stratification in the standard risk treatment.
    • 21. Tomizawa D, Yoshida M, Kondo T, Miyamura T, Taga T. Allogeneic hematopoietic stem cell transplantation for children and adolescents with high-risk cytogenetic AML: distinctly poor outcomes of FUS-ERG-positive cases. Bone Marrow Transplant. 54(3), 393–401 (2019). •• Demonstrated that patients with t(16;21)(p11;q22)/FUS-ERG represent an extremely poor prognostic subgroup even with allo-HSCT during remission.
    • 22. Ismael O, Shimada A, Elmahdi S, Elshazley M. RUNX1 mutation associated with clonal evolution in relapsed pediatric acute myeloid leukemia with t(16;21)(p11;q22). Int. J. Hematol. 99(2), 169–174 (2014).
    • 23. Zerkalenkova E, Panfyorova A, Kazakova A et al. Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG. Ann. Hematol. 97(6), 977–988 (2018).
    • 24. Kong BX, Ida K, Ichikawa H et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16; 21)(p11; q22) and identification of a novel transcript. Blood 90(3), 1192–1199 (1997).
    • 25. Imashuku S, Hibi S, Sako M, Lin Y, Tsunematsu Y. Hemophagocytosis by leukemic blasts in 7 acute myeloid leukemia cases with t(16;21)(p11;q22): common morphologic characteristics for this type of leukemia. Cancer 88(8), 1970–1975 (2000).
    • 26. Coenen EA, Zwaan CM, Reinhardt D et al. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Muenster AML-study group. Blood 122(15), 2704–2713 (2013). •• Demonstrated that pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features, with intermediate survival, in which spontaneous remissions occur in a subset of neonatal cases.
    • 27. Gomes Andrade F, Pereira E, Maria R et al. Identification of the MYST3-CREBBP fusion gene in infants with acute myeloid leukemia and hemophagocytosis. Brazilian J. Hematol. Hemotherapy 8(4), 291–297 (2016).
    • 28. Hollink IHIM, van den Heuvel-Eibrink MM, Arentsen-Peters STCJM et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 118(13), 3645–3656 (2011). •• Identified NUP98/NSD1 fusion gene in young AML patients with distinct characteristics and dismal prognosis.
    • 29. Romana S, Radford-Weiss I, Ben Abdelali R et al. NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogénétique Hématologique. Leukemia 20(4), 696–706 (2006).
    • 30. Cerveira N, Correia C, Doria S et al. Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia 17(11), 2244–2247 (2003).
    • 31. Hara Y, Shiba N, Ohki K et al. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 56(5), 394–404 (2017).
    • 32. von Bergh ARM, van Drunen E, Van Wering ER et al. High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer 45(8), 731–739 (2006).
    • 33. Satake N, Maseki N, Nishiyama M et al. Chromosome abnormalities and MLL rearrangements in acute myeloid leukemia of infants. Leukemia 13(7), 1013–1017 (1999).
    • 34. Chi Y, Lindgren V, Quigley S, Gaitonde S. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia. Arch. Pathol. Lab. Med. 132(11), 1835–1837 (2008).
    • 35. Zwaan CM, Meshinchi S, Radich JP et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 102(7), 2387–2394 (2003).
    • 36. Akiki S, Dyer SA, Grimwade D et al. NUP98-NSD1 fusion in association with FLT3-ITD mutation identifies a prognostically relevant subgroup of pediatric acute myeloid leukemia patients suitable for monitoring by real time quantitative PCR. Genes Chromosomes Cancer 52(11), 1053–1064 (2013).
    • 37. Pigazzi M, Manara E, Bresolin S et al. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica 98(4), 602–610 (2013).
    • 38. Ostronoff F, Othus M, Gerbing RB et al. NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood 124(15), 2400–2408 (2014).
    • 39. Taketani T, Taki T, Nakamura T et al. High frequencies of simultaneous FLT3-ITD, WT1 and KIT mutations in hematological malignancies with NUP98-fusion genes. Leukemia 24(11), 1975–1977 (2010).
    • 40. Fasan A, Haferlach C, Alpermann T, Kern W, Haferlach T, Schnittger S. A rare but specific subset of adult AML patients can be defined by the cytogenetically cryptic NUP98-NSD1 fusion gene. Leukemia 27(1), 245–248 (2013).
    • 41. Thol F, Kölking B, Hollink IHI et al. Analysis of NUP98/NSD1 translocations in adult AML and MDS patients. Leukemia 27(3), 750–754 (2013).
    • 42. Masetti R, Togni M, Astolfi A et al. DHH-RHEBL1 fusion transcript: a novel recurrent feature in the new landscape of pediatric CBFA2T3-GLIS2-positive acute myeloid leukemia. Oncotarget 4(10), 1712–1720 (2013).
    • 43. Elgarten CW, Aplenc R. Pediatric acute myeloid leukemia: updates on biology, risk stratification, and therapy. Curr. Opin. Pediatr. 32(1), 57–66 (2020).
    • 44. Qin H, Malek S, Cowell JK, Ren M. Transformation of human CD34+ hematopoietic progenitor cells with DEK-NUP214 induces AML in an immunocompromised mouse model. Oncogene 35(43), 5686–5691 (2016).
    • 45. Sandén C, Ageberg M, Petersson J, Lennartsson A, Gullberg U. Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer 13, 440 (2013).
    • 46. Harrison CJ, Hills RK, Moorman AV et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12. J. Clin. Oncol. 28(16), 2674–2681 (2010).
    • 47. Díaz-Beyá M, Labopin M, Maertens J et al. Allogeneic stem cell transplantation in AML with t(6;9)(p23;q34);DEK-NUP214 shows a favourable outcome when performed in first complete remission. Br. J. Haematol. 189(5), 920–925 (2020).
    • 48. Kayser S, Hills RK, Luskin MR et al. Allogeneic hematopoietic cell transplantation improves outcome of adults with t(6;9) acute myeloid leukemia: results from an international collaborative study. Haematologica 105(1), 161–169 (2020).
    • 49. Stone RM, Mandrekar SJ, Sanford BL et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377(5), 454–464 (2017).
    • 50. Jekarl WD, Kim M, Lim J et al. CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21)(p11;q22). Int. J. Hematol. 92(2), 306–313 (2010).
    • 51. Marosi C, Bettelheim P, Geissler K et al. Acute monoblastic leukemia with erythrophagocytosis. Cancer Genet. Cytogenet. 54(1), 61–66 (1991).
    • 52. Bock J, Mochmann LH, Schlee C et al. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling. PLoS ONE 8(1), e52872 (2013).
    • 53. Martens JHA, Mandoli A, Simmer F et al. ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 120(19), 4038–4048 (2012).
    • 54. Sotoca AM, Prange KHM, Reijnders B et al. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia. Oncogene 35(15), 1965–1976 (2016). • Suggested that FUS-ERG acts as a transcriptional repressor of the retinoic acid signaling pathway and all-trans retinoic acid treatment triggers differentiation and thereby stops self-renewal.
    • 55. Masetti R, Vendemini F, Zama D, Biagi C, Gasperini P, Pession A. All-trans retinoic acid in the treatment of pediatric acute promyelocytic leukemia. Expert Rev. Anticancer Ther. 12(9), 1191–1204 (2012).
    • 56. Yao S, Jianlin C, Yarong L et al. Donor-derived CD123-targeted CAR T cell serves as a RIC regimen for haploidentical transplantation in a patient with FUS-ERG+ AML. Front. Oncol. 9, 1358 (2019).
    • 57. Wu X, Sulavik D, Roulston D, Lim M. Spontaneous remission of congenital acute myeloid leukemia with t(8;16)(p11;13). Pediatr. Blood Cancer 56(11), 331–332 (2011).
    • 58. Diab A, Zickl L, Abdel-wahab O et al. Acute myeloid leukemia with translocation t(8;16) presents with features which mimic acute promyelocytic leukemia and is associated with poor prognosis. Leuk. Res. 37(1), 32–36 (2013).
    • 59. Barrett R, Marfleet L, Morash B et al. FISH identifies a KAT6A/CREBBP fusion caused by a cryptic insertional t(8;16) in a case of spontaneously remitting congenital acute myeloid leukemia with a normal karyotype. Pediatr. Blood Cancer 64(8) (2017).
    • 60. Weintraub M, Kaplinsky C, Amariglio N et al. Spontaneous regression of congenital leukaemia with an 8;16 translocation. Br. J. Haematol. 111(2), 641–643 (2000).
    • 61. Díaz-Beyá M, Navarro A, Ferrer G et al. Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia 27(3), 595–603 (2013).
    • 62. Camos M, Esteve J, Jares P et al. Gene expression profiling of acute myeloid leukemia with rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res. 66(14), 6947–6955 (2006).
    • 63. Murati A, Gervais C, Carbuccia N et al. Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases. Leukemia 23(1), 85–94 (2009).
    • 64. Haferlach T, Kohlmann A, Klein H et al. AML with translocation t (8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features. Leukemia 23(5), 934–943 (2009).
    • 65. Baell JB, Leaver DJ, Hermans SJ et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature 560(7717), 253–257 (2018).
    • 66. Jaju RJ, Fidler C, Haas OA et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98(4), 1264–1268 (2001).
    • 67. Struski S, Lagarde S, Bories P et al. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia 31(3), 565–572 (2017). •• Demonstrated that NUP98-rearranged pediatric AML begins with epigenetic dysregulation, followed by mutations of critical hematopoietic transcription factors and activation of the FLT3 signalling pathway.
    • 68. Noort S, Wander P, Alonzo TA et al. The clinical and biological characteristics of NUP98-KDM5A in pediatric acute myeloid leukemia. Haematologica doi:10.3324/haematol.2019.236745 (2020) (Epub ahead of print).
    • 69. Shiba N, Ichikawa H, Taki T et al. NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer 52(7), 683–693 (2013).
    • 70. Xu H, Valerio DG, Eisold ME et al. NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis. Cancer Cell 30(6), 863–878 (2016).
    • 71. Bisio V, Zampini M, Tregnago C et al. NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: a report from the AIEOP-AML group. Leukemia 31(4), 974–977 (2017). •• First study documenting in primary NUP98-NSD1-rearranged leukemia cells an altered spindle assembly checkpoint and an aberrant response to DNA damage.
    • 72. Lavallé V, Lemieux S, Boucher G et al. Identification of MYC mutations in acute myeloid leukemias with NUP98-NSD1 translocations. Leukemia 30(7), 1621–1624 (2016).
    • 73. Cardin S, Bilodeau M, Roussy M et al. Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Adv 3(21), 3307–3321 (2019). •• First study demonstrating that NUP98-KDM5A expression in human cord blood hematopoietic stem and progenitor cells is a potent inducer of maturation arrest and is associated with activation of JAK-STAT pathway, resulting in vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor.
    • 74. Gruber TA, Larson Gedman A, Zhang J et al. An inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 29(10), 1883–1889 (2012). •• Together with [70] detected for the first time CBFA2T3-GLIS2 fusion gene as driver in the initiation of AMKL in pediatric patients.
    • 75. Thiollier C, Lopez CK, Gerby B et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J. Exp. Med. 209(11), 2017–2031 (2012). •• Together with [69] detected for the first time CBFA2T3-GLIS2 fusion gene as driver in the initiation of AMKL in pediatric patients.
    • 76. Masetti R, Bertuccio SN, Astolfi A et al. Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene. J. Hematol. Oncol. 10(1), 26 (2017). • Demonstrated that GANT61, a hedgehog pathway inhibitor, selectively inhibited proliferation of cell lines and primary cells harboring CBFA2T3-GLIS2 fusion.
    • 77. Masetti R, Rondelli R, Fagioli F et al. Infants with acute myeloid leukemia treated according to the Associazione Italiana di Ematologia e Oncologia Pediatrica 2002/01 protocol have an outcome comparable to that of older children. Haematologica 99(8), 127–129 (2014).
    • 78. Lopez CK, Noguera E, Stavropoulou V et al. Ontogenic changes in hematopoietic hierarchy determine pediatric specificity and disease phenotype in fusion oncogene–driven myeloid leukemia. Cancer Discov. 9(12), 1736–1753 (2019). •• Demonstrated that aggressive pediatric AMKL originates in fetal hematopoietic stem progenitor cells.
    • 79. Creutzig U, Dworzak MN, Zimmermann M et al. Characteristics and outcome in patients with central nervous system involvement treated in European pediatric acute myeloid leukemia study groups. Pediatr. Blood Cancer 64(12) (2017).
    • 80. Masetti R, Bertuccio SN, Pession A, Locatelli F. CBFA2T3-GLIS2-positive acute myeloid leukaemia. A peculiar paediatric entity. Br. J. Haematol. 184(3), 337–347 (2019).
    • 81. Thirant C, Ignacimouttou C, Lopez CK et al. ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia. Cancer Cell 31(3), 452–465 (2017).
    • 82. Thirant C, Lopez C, Malinge S, Mercher T. Molecular pathways driven by ETO2-GLIS2 in aggressive pediatric leukemia. Mol. Cell. Oncol. 4(6), e1345351 (2017).
    • 83. Eidenschink Brodersen L, Alonzo T, Menssen A et al. A recurrent immunophenotype at diagnosis independently identifies high-risk pediatric acute myeloid leukemia: a report from Children's Oncology Group. 30(10), 2077–2080 (2016).
    • 84. Wen Q, Goldenson B, Silver SJ et al. Integrative screening approach identifies regulators of polyploidization and targets for acute megakaryocytic leukemia. Cell 150(3), 575–589 (2012).
    • 85. Wichmann C, Chen L, Heinrich M et al. Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells. Cancer Res. 67(5), 2280–2289 (2007).
    • 86. Pan D, Li Y, Li Z, Wang Y, Wang P, Liang Y. Gli inhibitor GANT61 causes apoptosis in myeloid leukemia cells and acts in synergy with rapamycin. Leuk. Res. 36(6), 742–748 (2012).
    • 87. Agyeman A, Jha BK, Mazumdar T, Houghton JA. Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget 5(12), 4492–4503 (2014).
    • 88. Vasanth S, ZeRuth G, Kang HS, Jetten AM. Identification of nuclear localization, DNA binding, and transactivating mechanisms of krüppel-like zinc finger protein gli-similar 2 (GLIS2). J. Biol. Chem. 286(6), 4749–4759 (2011).
    • 89. Naiel A, Vetter M, Plekhanova O et al. A novel three-colour fluorescence in situ hybridization approach for the detection of t(7;12)(q36;p13) in acute myeloid leukaemia reveals new cryptic three way translocation t(7;12;16). Cancers (Basel) 5(1), 281–295 (2013).
    • 90. Park J, Kim M, Lim J et al. Three-way complex translocations in infant acute myeloid leukemia with t(7;12)(q36;p13): the incidence and correlation of a HLXB9 overexpression. Cancer Genet. Cytogenet. 191(2), 102–105 (2009).
    • 91. Tosi S, Kamel YM, Owoka T, Federico C, Truong TH, Saccone S. Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects. Biomark. Res. 3, 21 (2015).
    • 92. Tosi S, Hughes J, Scherer SW et al. Heterogeneity of the 7q36 breakpoints in the t (7;12) involving ETV6 in infant leukemia. Genes Chromosomes Cancer 38(2), 191–200 (2003).
    • 93. Espersen ADL, Ha S, Hasle H, Abrahamsson J, Noren-nystr UJG. Acute myeloid leukemia (AML) with t(7;12)(q36;p13) is associated with infancy and trisomy 19: data from Nordic Society for Pediatric Hematology and Oncology (NOPHO-AML) and review of the literature. Genes Chromosomes Cancer 57(7), 359–365 (2018). •• Showed that t(7;12)(q36;13) is a unique subgroup of childhood AML with presentation before 2 years of age, with most cases being associated with +19.
    • 94. Webb DKH, Harrison G, Stevens RF, Gibson BG, Hann IM. Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood 98(6), 1714–1721 (2001).
    • 95. Harrison CJ, Hills RK, Moorman AV et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12. J. Clin. Oncol. 28(16), 2674–2681 (2010).
    • 96. Chessells JM, Harrison CJ, Kempski H et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia 16(5), 776–784 (2002).
    • 97. Beverloo HB, Panagopoulos I, Isaksson M et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res. 61(14), 5374–5377 (2001).
    • 98. Zhou F, Chen B. Acute myeloid leukemia carrying ETV6 mutations: biologic and clinical features. Hematology 23(9), 608–612 (2018).
    • 99. Ballabio E, Cantarella C, Federico C et al. Ectopic expression of the HLXB9 gene is associated with an altered nuclear position in t(7;12) leukaemias. Leukemia 23(6), 1179–1182 (2009).
    • 100. Tosi S, Harbott J, Teigler-schlegel A et al. t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 29(4), 325–332 (2000).
    • 101. Hirsch B, Alonzo TA, Gerbing RB et al. Abnormalities of 12p are associated with high-risk acute myeloid leukemia: a Children's Oncology Group report. Blood 122(21), 612 (2013). •• Showed that 12p is relatively rare in AML and that AML patients with 12p abnormalities have a poor prognosis.
    • 102. Simmons HM, Oseth L, Nguyen P, Leary MO, Conklin KF, Hirsch B. Cytogenetic and molecular heterogeneity of 7q36/12p13 rearrangements in childhood AML. Leukemia 16(12), 2408–2416 (2002).
    • 103. Ward E, Desantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 64(2), 83–103 (2014).
    • 104. Wildenhain S, Ruckert C, Röttgers S et al. Expression of cell–cell interacting genes distinguishes HLXB9/TEL from MLL-positive childhood acute myeloid leukemia. Leukemia 24(9), 1657–1660 (2010).
    • 105. Taketani T, Taki T, Sako M, Ishii T. MNX1-ETV6 fusion gene in an acute megakaryoblastic leukemia and expression of the MNX1 gene in leukemia and normal B cell lines. Cancer Genet. Cytogenet. 186(2), 115–119 (2008).
    • 106. Nagel S, Ehrentraut S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Oncogenic deregulation of NKL homeobox gene MSX1 in mantle cell lymphoma. Leuk. Lymphoma. 55(8), 1893–1903 (2014).
    • 107. Neufing PJ, Kalionis B, Horsfall DJ et al. Expression and localization of homeodomain proteins DLX4/HB9 in normal and malignant human breast tissues. Anticancer Res. 23(2B), 1479–1488 (2003).
    • 108. Almstrup K, Leffers H, Lothe RA et al. Improved gene expression signature of testicular carcinoma in situ. Int. J. Androl. 30(4), 292–302 (2007).
    • 109. Wilkens L, Jaggi R, Hammer C, Inderbitzin D, Giger O, von Neuhoff N. The homeobox gene HLXB9 is upregulated in a morphological subset of poorly differentiated hepatocellular carcinoma. Virchows Arch. 458(6), 697–708 (2011).
    • 110. El-Khazragy N, Ghozy S, Matbouly S et al. Interaction between 12p chromosomal abnormalities and Lnc–HOTAIR mediated pathway in acute myeloid leukemia. J. Cell. Biochem. 120(9), 15288–15296 (2019).
    • 111. de Rooij J, Beuling E, Fornerod M, Obulkasim A, Baruchel A, Trka J. ETV6 aberrations are a recurrent event in pediatric acute myeloid leukemia with poor clinical outcome. Blood 124(21), 1012 (2014).
    • 112. Hernandez JM, Gonzalez MB, Garcia JL et al. Two cases of myeloid disorders and a t(8;12)(q12;p13). Haematologica 85(1), 31–34 (2000).
    • 113. Slater RM, Drunen E, Kroes WG et al. t(7;12)(q36;p13) and t(7;12)(q32;p13) – translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia 15(6), 915–920 (2001).
    • 114. Bertuccio SN, Boudia F, Cambot M et al. The pediatric acute leukemia fusion oncogene ETO2-GLIS2 increases self-renewal and alters differentiation in a human induced pluripotent stem cells–derived model. HemaSphere 4(1), e319 (2020). •• Demonstrated for the first time that induced pluripotent stem cells (iPSCs) could be useful for studying the early stages of fetal hematopoiesis of pediatric AML.