We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Long noncoding RNA ANRIL as a novel biomarker in human cancer

    Ning Lou

    Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China

    ,
    Guohong Liu

    Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China

    Authors contributed equally to the work

    Search for more papers by this author

    &
    Yunbao Pan

    Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China

    Authors contributed equally to the work

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/fon-2020-0470

    The long noncoding RNA ANRIL, located in the human chromosome 9p21 region, has been reported to be involved in tumor progression. ANRIL regulates gene expression via recruiting PRC2 or titrating miRNA; it also participates in signaling pathways. Evidence has indicated that ANRIL is overexpressed in many cancer types and is capable of enhancing cell proliferation and cell cycle progression and inhibiting apoptosis and senescence. ANRIL has the potential to serve as a biomarker for diagnosis and prognosis in cancer. In this article we focus on recent advances in studies of the oncogenic role of ANRIL and its potential role in cancer medicine.

    References

    • 1. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).
    • 2. Djebali S, Davis CA, Merkel A et al. Landscape of transcription in human cells. Nature 489(7414), 101–108 (2012).
    • 3. Dong W, Ivan GB, Chris B et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474 (.7351), 390–394 (2011).
    • 4. Ravasi T, Suzuki H, Pang KC et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16(1), 11–19 (2006).
    • 5. Ip JY, Nakagawa S. Long non-coding RNAs in nuclear bodies. Dev. Growth Differ. 54(1), 44–54 (2012).
    • 6. He JH, Han ZP, Li YG. Association between long non-coding RNA and human rare diseases (review). Biomed. Rep. 2(1), 19–23 (2014).
    • 7. Ernst C, Morton CC. Identification and function of long non-coding RNA. Front. Cell. Neurosci. 7, 168 (2013).
    • 8. Ye N, Wang B, Quan ZF et al. Functional roles of long non-coding RNA in human breast cancer. Asian Pac. J. Cancer Prev. 15(15), 5993–5997 (2014).
    • 9. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10(3), 155–159 (2009).
    • 10. Di FG, Capaccioli S, Lulli M. A pathophysiological view of the long non-coding RNA world. Oncotarget 5(22), 10976–10996 (2014).
    • 11. Liang S, Luo HT, Qi L et al. Systematic study of human long intergenic non-coding RNAs and their impact on cancer. Science China Life Sciences 56(4), 324–334 (2013).
    • 12. Kotake Y, Nakagawa T, Kitagawa K et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30 (.16), 1956–1962 (2011).
    • 13. Pasmant E, Laurendeau I, Héron D et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67(8), 3963–3969 (2007).
    • 14. Holdt LM, Frank B, Markus S et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 30(3), 620–627 (2010).
    • 15. Li Z, Yu X, Shen J. ANRIL: a pivotal tumor suppressor long non-coding RNA in human cancers. Tumour Biol. 37(5), 5657–5661 (2016).
    • 16. Jarinova O, Stewart AR. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler. Thromb. Vasc. Biol. 29(10), 1671–1677 (2009).
    • 17. Holdt LM, Hoffmann S, Sass K et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 9(7), e1003588 (2013).
    • 18. Lasse F, Theodosios K, Anuj G et al. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS ONE 4(11), e7677 (2009).
    • 19. Burd CE, Jeck WR, Liu Y et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6(12), e1001233 (2010).
    • 20. Sarkar D, Oghabian A, Bodiyabadu PK et al. Multiple isoforms of ANRIL in melanoma cells: structural complexity suggests variations in processing. Int. J. Mol. Sci. 18(7), 1378 (2017).
    • 21. Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 58(1), 470–480 (2017).
    • 22. Kennison JA. The polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet. 29(1), 289–303 (1995).
    • 23. Müller J, Verrijzer P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr. Opin. Genet. Dev. 19(2), 150–158 (2009).
    • 24. Schuettengruber B, Chourrout D, Vervoort M et al. Genome regulation by polycomb and trithorax proteins. Cell 128(4), 735–745 (2007).
    • 25. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6(11), 846–856 (2006).
    • 26. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).
    • 27. Margueron R, Li G, Sarma K et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32(4), 503–518 (2008).
    • 28. Shen X, Liu Y, Hsu YJ et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32(4), 491–502 (2008).
    • 29. Whitcomb SJ, Basu A, Allis CD et al. Polycomb group proteins: an evolutionary perspective. Trends Genet. 23(10), 494–502 (2007).
    • 30. Grossniklaus U, Paro R. Transcriptional silencing by polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 6(11), a019331 (2014).
    • 31. Jacobs JJ, Kieboom K, Marino S et al. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397(6715), 164–168 (1999).
    • 32. Itahana K, Zou Y, Itahana Y et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23(1), 389–401 (2003).
    • 33. Bracken AP, Daniela KK, Nikolaj D et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21(5), 525–530(2007).
    • 34. Kotake Y, Cao R, Viatour P et al. pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes Dev. 21(1), 49–54 (2007).
    • 35. Kia SK, Gorski MM, Giannakopoulos S et al. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28(10), 3457–3464 (2008).
    • 36. Karl A, Cloos PAC, Lise R et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23(10), 1171–1176 (2009).
    • 37. Yap KL, Li S, Muñoz-Cabello AM et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38(5), 662–674 (2010).
    • 38. Francesca A, Ming-Ming Z, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 71(16), 5365–5369 (2011).
    • 39. Harismendy O, Notani D, Song X et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470(7333), 264–268 (2011).
    • 40. Er-Bao Z, Rong K, Dan-Dan Y et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5(8), 2276–2292 (2014).
    • 41. Yan L, Sanoff HK, Hyunsoon C et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS ONE 4(4), e5027 (2009).
    • 42. Cunnington MS, Santibanez Koref M, Mayosi BM et al. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6(4), e1000899 (2010).
    • 43. Broadbent HM, Peden JF, Lorkowski S et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet. 17(6), 806–814 (2008).
    • 44. Ada C, Kei K, Ryousuke O et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220(2), 449–455 (2012).
    • 45. Zhang D, Sun G, Zhang H et al. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomed. Pharmacother. 85, 511–516 (2016).
    • 46. Xu ST, Xu JH, Zheng ZR et al. Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed. Pharmacother. 96(6), 14–21 (2017).
    • 47. Chai L, Yuan Y, Chen C et al. The role of long non-coding RNA ANRIL in the carcinogenesis of oral cancer by targeting miR-125a. Biomed. Pharmacother. 103, 38–45 (2018).
    • 48. Liu P, Zhang M, Niu Q et al. Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1. Braz. J. Med. Biol. Res. 51(10), e6839 (2018).
    • 49. Zhao B, Yang Y, Hu LB et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/Smad signaling pathway. Cancer Biomark. 21(3), 613–620 (2018).
    • 50. Wang Y, Cheng N, Luo J. Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. J. Biochem. Mol. Toxicol. 31(7), e21904 (2017).
    • 51. Hu X, Jiang H, Jiang X. Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biol. Ther. 18(5), 331–338 (2017).
    • 52. Poi MJ, Li J, Sborov DW et al. Polymorphism in ANRIL is associated with relapse in patients with multiple myeloma after autologous stem cell transplant. Mol. Carcinog. 56(7), 1722–1732 (2017).
    • 53. Sun LY, Li XJ, Sun YM et al. LncRNA ANRIL regulates AML development through modulating the glucose metabolism pathway of ADIPOR1/AMPK/SIRT1. Mol. Cancer 17(1), 127 (2018).
    • 54. Royds JA, Pilbrow AP, Ahn A et al. The rs11515 polymorphism is more frequent and associated with aggressive breast tumors with increased ANRIL and decreased p16INK4a expression. Front. Oncol. 5, 306 (2016).
    • 55. Hua L, Wang CY, Yao KH et al. High expression of long non-coding RNA ANRIL is associated with poor prognosis in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 8(3), 3076–3082 (2015).
    • 56. Hoffmann MJ, Dehn J, Droop J et al. Truncated isoforms of lncRNA ANRIL are overexpressed in bladder cancer, but do not contribute to repression of INK4 tumor suppressors. Noncoding RNA 1(3), 266–284 (2015).
    • 57. Qiu J, Wang Y, Liu Yl et al. The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget 7(22), 32478–32492 (2016).
    • 58. Johnson AD, Hwang SJ, Voorman A et al. Resequencing and clinical associations of the 9p21.3 region. A comprehensive investigation in the Framingham Heart Study. Circulation 127(7), 799–810 (2013).
    • 59. Hungate EA, Vora SR, Gamazon ER et al. A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Nat. Commun. 7, 10635 (2016).
    • 60. Ming C, An S, Li J. CDKN2B–AS may indirectly regulate coronary artery disease-associated genes via targeting miR-92a. Gene 629, 101–107 (2017).
    • 61. Gong W, Peng J, Yin J et al. Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in Chinese patients with lung cancer. Acta Pharmacol. Sin. 38(4), 581–590 (2017).
    • 62. Teeuw WJ, Laine ML, Sergio B et al. A lead ANRIL polymorphism is associated with elevated CRP levels in periodontitis: a pilot case-control study. PLoS ONE 10(9), e0137335 (2015).
    • 63. Frydenberg H, Thune I, Lofterød T et al. Pre-diagnostic high-sensitive C-reactive protein and breast cancer risk, recurrence, and survival. Breast Cancer Res. Treat. 155(2), 1–10 (2016).
    • 64. Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis. Biosci. Rep. 38(4), BSR20180365 (2018).
    • 65. Chen S, Zhang JQ, Chen JZ et al. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: an in vivo and in vitro study. Int. J. Biol. Macromol. 102, 718–728 (2017).
    • 66. Zou ZW, Ma C, Medoro L et al. LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells. Oncotarget 7(38), 61741–61754 (2016).
    • 67. Jin Y, Cui Z, Li X et al. Upregulation of long non-coding RNA PlncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer. Oncotarget 8(16), 26090–26099 (2017).
    • 68. Ratz L, Laible M, Kacprzyk LA et al. TMPRSS2:ERG gene fusion variants induce TGF-β signaling and epithelial to mesenchymal transition in human prostate cancer cells. Oncotarget 8(15), 25115–25130 (2017).
    • 69. Hamidi A, Song J, Thakur N et al. TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Sci. Signal. 10(486), eaal4186 (2017).
    • 70. Gil J, Peters G. Regulation of the INK4B–ARF–INK4A tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7(9), 667–677 (2006).
    • 71. Sherr CJ. INK4-ARF locus in cancer and aging. Wiley Interdiscip. Rev. Dev. Biol. 1(5), 731–741 (2012).
    • 72. Kim WY, Sharpless NE. The regulation of INK4 / ARF in cancer and aging. Cell 127(2), 265–275 (2006).
    • 73. Moore L, Venkatachalam SH, Watt JC et al. Cooperativity of p19ARF, Mdm2 and p53 in murine tumorigenesis. Oncogene 22(49), 7831–7837 (2003).
    • 74. Popov N, Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus. Epigenetics 5(8), 685–690 (2010).
    • 75. Kotake Y, Naemura M, Murasaki C et al. Transcriptional regulation of the p16 tumor suppressor gene. Anticancer Res. 35(8), 4397–4401 (2015).
    • 76. Wen-Qing L, Pfeiffer RM, Hyland PL et al. Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. Carcinogenesis 35(12), 2698–2705 (2014).
    • 77. Zhang H, Wang X, Chen X. Potential role of long non-coding RNA ANRIL in pediatric medulloblastoma through promotion on proliferation and migration by targeting miR-323. J. Cell. Biochem. 118(12), 4735–4744 (2017).
    • 78. Li Q, Tian Y, Hu G et al. Highly expressed antisense non-coding RNA in the INK4 locus promotes 5 growth and invasion of renal clear carcinoma cells via the β-catenin pathway. Oncol. Res. 25(8), 1373–1382 (2017).
    • 79. Yin X, Liao Y, Xiong W, Zhang Y, Zhou Y, Yang Y. Hypoxia-induced lncRNAANRIL promotes cisplatin resistance in retinoblastoma cells through regulating ABCG2 expression. Clin. Exp. Pharmacol. Physiol.. 47(6), 1049–1057 (2020).
    • 80. Wai LT, Huck HN. Sox2: masterminding the root of cancer. Cancer Cell 26(1), 3–5 (2014).
    • 81. Basu-Roy U, Bayin NS, Rattanakorn K et al. Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat. Commun. 6, 6411 (2015).
    • 82. Wu JH, Tang JM, Li J et al. Upregulation of SOX2-activated lncRNA ANRIL promotes nasopharyngeal carcinoma cell growth. Sci. Rep. 8(1), 3333 (2018).
    • 83. Zhang JJ, Wang DD, Du CX et al. Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of miR-186. Oncol. Res. 26(3), 345–352 (2017).
    • 84. Bi Q, Tang S, Xia L et al. Ectopic expression of miR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS ONE 7(6), e40169 (2012).
    • 85. Cortez MA, Nicoloso MS, Shimizu M et al. miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer 49(11), 981–990 (2010).
    • 86. Ma J, Li T, Han X, Yuan H. Knockdown of lncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 144(2), 205–214 (2018).
    • 87. Dai W, Tian C, Jin S. Effect of lncRNA ANRIL silencing on anoikis and cell cycle in human glioma via microRNA-203a. Onco Targets Ther. 11, 5103–5109 (2018).
    • 88. Congrains A, Kamide K, Katsuya T et al. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem. Biophys. Res. Commun. 419(4), 612–616 (2012).
    • 89. Wang J, Sun J, Wang J et al. Long noncoding RNAs in gastric cancer: functions and clinical applications. Onco Targets Ther. 9, 681–697 (2016).
    • 90. Ada C, Kei K, Mitsuru O et al. ANRIL: molecular mechanisms and implications in human health. Int. J. Mol. Sci. 14(1), 1278–1292 (2013).
    • 91. Naemura M, Murasaki C, Inoue Y et al. Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells. Anticancer Res. 35(10), 5377–5382 (2015).
    • 92. Naemura M, Tsunoda T, Inoue Y et al. ANRIL regulates the proliferation of human colorectalcancer cells in both two- and three-dimensional culture. Mol.Cell. Biochem. 412 (.1–2), 141–146 (2015).
    • 93. Furuta E, Okuda H, Kobayashi A et al. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta 1805(2), 141–152 (2010).
    • 94. Jones NP, Schulze A, Targeting cancer metabolism – aiming at a tumour's sweet-spot. Drug Discov. Today 8 (.20), 232–241 (2003).
    • 95. Fan C, Tang Y, Wang J et al. Role of long non-coding RNAs in glucose metabolism in cancer. Mol. Cancer 16(1), 130(2017).
    • 96. Hu X, Bao J, Zhen W et al. The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumor Biol. 37(3), 3497–3504 (2016).
    • 97. Xie Y, Zhang Y. Du L et al. Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Mol. Oncol. 12(5), 648–658 (2018).
    • 98. Wang M, Ma X, Zhu C et al. The prognostic value of long non coding RNAs in non small cell lung cancer: a meta-analysis. Oncotarget 7(49), 81292 (2016).
    • 99. Lu Y, Zhou X, Xu L et al. Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. Onco Targets Ther. 9, 3077–3084 (2016).
    • 100. Sun Y, Zheng ZP, Li H et al. ANRIL is associated with the survival rate of patients with colorectal cancer, and affects cell migration and invasion in vitro. Mol. Med. Rep. 14(2), 1714–1720 (2016).
    • 101. Bahrami A, Hassanian SM, Khazaei M et al. The 9p21 locus as a potential therapeutic target and prognostic marker in colorectal cancer. Pharmacogenomics 19 (.5), 463 (2018).
    • 102. Wang H, Liu Y, Zhong J et al. Long noncoding RNA ANRIL as a novel biomarker of lymph node metastasis and prognosis in human cancer: a meta-analysis. Oncotarget 9(18), 14608–14618 (2017).
    • 103. Gao S, Zhao Z-Y, Wu R et al. Prognostic value of long noncoding RNAs in gastric cancer: a meta-analysis. Onco Targets Ther 11, 4877–4891 (2018).
    • 104. Iranpour M, Soudyab M, Geranpayeh L et al. Expression analysis of four long noncoding RNAs in breast cancer. Tumor Biol. 37(3), 1–8 (2016).
    • 105. Huang M-D, Chen W-M, Qi F-Z et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J. Hematol. Oncol. 8(1), 57 (2015).
    • 106. Zhang B, Wang D, Ji TF et al. Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 8(10), 17347–17359 (2017).
    • 107. van der Pol E, Böing AN, Harrison P et al. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64(3), 676–705 (2012).
    • 108. Keller S, Sanderson MP, Stoeck A et al. Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107(2), 102–108 (2006).
    • 109. Spaull R, McPherson B, Gialeli A et al. Exosomes populate the cerebrospinal fluid of preterm infants with post-haemorrhagic hydrocephalus. Int. J. Dev. Neurosci. 73, 59–65 (2019).
    • 110. Ostenfeld MS, Jeppesen DK, Laurberg JR et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 74(20), 5758–5771 (2014).
    • 111. Takahashi K, Yan IK, Kogure T et al. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 4(1), 458–467 (2014).
    • 112. Berrondo C, Flax J, Kucherov V et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE 11(1), e0147236(2016).
    • 113. Krajčová A, Waldauf P, Anděl M et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit. Care 19, 398 (2015).
    • 114. Chen F, Li M, Zhu X. Propofol suppresses proliferation and migration of papillary thyroid cancer cells by down-regulation of lncRNA ANRIL. Exp. Mol. Pathol. 107, 68–76 (2019).
    • 115. Xu S, Wang H, Pan H. ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett. 381(1), 41–48 (2016).
    • 116. Ge J, Geng S, Jiang H. Long noncoding RNAs antisense noncoding RNA in the INK4 locus (ANRIL) correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in patients with chronic obstructive pulmonary disease. J. Clin. Lab. Anal. 33(2), e22678 (2019).
    • 117. Hu J, Wang D, Wu H. Long non-coding RNA ANRIL-mediated inflammation response is involved in protective effect of rhein in uric acid nephropathy rats. Cell Biosci. 9, 11 (2019).
    • 118. Lee J, Jung JH, Chae YS et al. Long noncoding RNA snaR regulates proliferation, migration and invasion of triple-negative breast cancer cells. Anticancer Res. 36 (.12), 6289 (2016).
    • 119. Lan WG, Xu DH, Xu C et al. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol. Rep. 36(1), 263 (2016).
    • 120. Liu B, Shen E-D, Liao M-M et al. Expression and mechanisms of long non-coding RNA genes MEG3 and ANRIL in gallbladder cancer. Tumor Biol. 37 (.7), 9875–9886 (2016).