We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

CD38 as an immunomodulator in cancer

    Yanli Li

    Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China

    ,
    Rui Yang

    Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China

    ,
    Limo Chen

    **Author for correspondence:

    E-mail Address: LChen12@mdanderson.org

    Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030‐4009 USA

    &
    Sufang Wu

    *Author for correspondence:

    E-mail Address: wsf_sfph@sjtu.edu.cn

    Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China

    Published Online:https://doi.org/10.2217/fon-2020-0401

    CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. USA 77(3), 1588–1592 (1980).
    • 2. Terhorst C, van Agthoven A, Leclair K, Snow P, Reinherz E, Schlossman S. Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell 23(3), 771–780 (1981).
    • 3. Malavasi F, Funaro A, Alessio M et al. CD38: a multi-lineage cell activation molecule with a split personality. Int. J. Clin. Lab. Res. 22(2), 73–80 (1992).
    • 4. Jackson DG, Bell JI. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol. 144(7), 2811–2815 (1990).
    • 5. Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K. Human CD38: a glycoprotein in search of a function. Immunol. Today 15(3), 95–97 (1994).
    • 6. Funaro A, Horenstein AL, Calosso L et al. Identification and characterization of an active soluble form of human CD38 in normal and pathological fluids. Int. Immunol. 8(11), 1643–1650 (1996).
    • 7. Vences-Catalan F, Santos-Argumedo L. CD38 through the life of a murine B lymphocyte. IUBMB Life 63(10), 840–846 (2011).
    • 8. Lund F, Solvason N, Grimaldi JC, Parkhouse RM, Howard M. Murine CD38: an immunoregulatory ectoenzyme. Immunol. Today 16(10), 469–473 (1995).
    • 9. Mehta K, Shahid U, Malavasi F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 10(12), 1408–1417 (1996).
    • 10. Guse AH, Da Silva CP, Berg I et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398(6722), 70–73 (1999).
    • 11. Lund FE, Muller-Steffner HM, Yu N, Stout CD, Schuber F, Howard MC. CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. J. Immunol. 162(5), 2693–2702 (1999).
    • 12. Nishina H, Inageda K, Takahashi K, Hoshino S, Ikeda K, Katada T. Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronate-binding activity. Biochem. Biophys. Res. Commun. 203(2), 1318–1323 (1994).
    • 13. Deaglio S, Mallone R, Baj G et al. CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem. Immunol. 75(1015-0145), 99–120 (2000). • This was the first description about the role of the crosstalk between CD38 and CD31.
    • 14. Nata K, Takamura T, Karasawa T et al. Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene 186(2), 285–292 (1997).
    • 15. Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q. Crystal structure of human CD38 extracellular domain. Structure 13(9), 1331–1339 (2005).
    • 16. Malavasi F, Deaglio S, Funaro A et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88(3), 841–886 (2008).
    • 17. Morra M, Zubiaur M, Terhorst C, Sancho J, Malavasi F. CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J. 12(7), 581–592 (1998).
    • 18. Janossy G, Tidman N, Papageorgiou ES, Kung PC, Goldstein G. Distribution of T lymphocyte subsets in the human bone marrow and thymus: an analysis with monoclonal antibodies. J. Immunol. 126(4), 1608–1613 (1981).
    • 19. Bataille R, Jego G, Robillard N et al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica 91(9), 1234–1240 (2006).
    • 20. Cesano A, Visonneau S, Deaglio S, Malavasi F, Santoli D. Role of CD38 and its ligand in the regulation of MHC-nonrestricted cytotoxic T cells. J. Immunol. 160(3), 1106–1115 (1998).
    • 21. Dixit S, Singh A, Mamatha GS, Desai RS, Jaju P. Apert’s syndrome: report of a new case and its management. Int. J. Clin. Pediatr. Dent. 1(1), 48–53 (2008).
    • 22. Laubach JP, Tai YT, Richardson PG, Anderson KC. Daratumumab granted breakthrough drug status. Expert Opin. Investig. Drugs 23(4), 445–452 (2014).
    • 23. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am. J. Clin. Pathol. 121(4), 482–488 (2004).
    • 24. van De Donk NW, Janmaat ML, Mutis T et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol. Rev. 270(1), 95–112 (2016).
    • 25. Boslett J, Hemann C, Christofi FL, Zweier JL. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia/reoxygenation depleting NAD(P)H. Am. J. Physiol. Cell Physiol. 314(3), C297–C309 (2017).
    • 26. Guan XH, Hong X, Zhao N et al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J. Cell. Mol. Med. 21(8), 1492–1502 (2017).
    • 27. Schiavoni I, Scagnolari C, Horenstein AL et al. CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells. Immunology 154(1), 122–131 (2017).
    • 28. Lins L, Farias E, Brites-Alves C, Torres A, Netto EM, Brites C. Increased expression of CD38 and HLADR in HIV-infected patients with oral lesion. J. Med. Virol. 89(10), 1782–1787 (2017).
    • 29. Wursch D, Ormsby CE, Romero-Rodriguez DP et al. CD38 expression in a subset of memory T cells is independent of cell cycling as a correlate of HIV disease progression. Dis. Markers 2016, 9510756 (2016).
    • 30. Deshpande DA, Guedes AG, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: potential therapeutic targets. Pharmacol. Ther. 172, 116–126 (2017).
    • 31. Henriques A, Silva I, Ines L et al. CD38, CD81 and BAFFR combined expression by transitional B cells distinguishes active from inactive systemic lupus erythematosus. Clin. Exp. Med. 16(2), 227–232 (2016).
    • 32. Mallone R, Ortolan E, Pinach S et al. Anti-CD38 autoantibodies: characterisation in new-onset Type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies. Diabetologia 45(12), 1667–1677 (2002).
    • 33. Mallone R, Perin PC. Anti-CD38 autoantibodies in type? diabetes. Diabetes Metab. Res. Rev. 22(4), 284–294 (2006).
    • 34. Kim BJ, Choi YM, Rah SY et al. Seminal CD38 is a pivotal regulator for fetomaternal tolerance. Proc. Natl. Acad. Sci. USA 112(5), 1559–1564 (2015).
    • 35. Higashida H, Munesue T. [CD38 and autism spectrum disorders]. No To Hattatsu 45(6), 431–435 (2013).
    • 36. Boini KM, Xia M, Xiong J, Li C, Payne LP, Li PL. Implication of CD38 gene in podocyte epithelial-to-mesenchymal transition and glomerular sclerosis. J. Cell. Mol. Med. 16(8), 1674–1685 (2012).
    • 37. Joosse ME, Menckeberg CL, De Ruiter LF et al. Frequencies of circulating regulatory TIGIT+CD38+ effector T cells correlate with the course of inflammatory bowel disease. Mucosal Immunol. 12(1), 154–163 (2019).
    • 38. Wang H, Li S, Zhang G, Wu H, Chang X. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res. Ther. 21(1), 220–220 (2019).
    • 39. Deaglio S, Mehta K, Malavasi F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk. Res. 25(1), 1–12 (2001).
    • 40. Quarona V, Zaccarello G, Chillemi A et al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytom. 84(4), 207–217 (2013).
    • 41. Zeijlemaker W, Grob T, Meijer R et al. CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 33(5), 1102–1112 (2019).
    • 42. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood 118(13), 3470–3478 (2011).
    • 43. Damle RN, Wasil T, Fais F et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94(6), 1840–1847 (1999). • This was the first time to report the function of CD38 expression in CLL cells.
    • 44. Liu X, Grogan TR, Hieronymus H et al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep. 17(10), 2596–2606 (2016).
    • 45. Stone L. Prostate cancer: on the down-low – low luminal cell CD38 expression is prognostic. Nat. Rev. Urol. 14(3), 133 (2017).
    • 46. Zhang M, Yang J, Zhou J et al. Prognostic values of CD38+CD101+PD1+CD8+ T cells in pancreatic cancer. Immunol. Invest. 48(5), 466–479 (2019).
    • 47. Jiang Z, Wu D, Lin S, Li P. CD34 and CD38 are prognostic biomarkers for acute B lymphoblastic leukemia. Biomark. Res. 4, 23 (2016).
    • 48. Xu L, Chen D, Lu C, Liu X, Wu G, Zhang Y. Advanced lung cancer is associated with decreased expression of perforin, CD95, CD38 by circulating CD3+CD8+ T lymphocytes. Ann. Clin. Lab. Sci. 45(5), 528–532 (2015).
    • 49. Lam JH, Ng HHM, Lim CJ et al. Expression of CD38 on macrophages predicts improved prognosis in hepatocellular carcinoma. Front. Immunol. 10, 2093 (2019).
    • 50. Yeong J, Lim JCT, Lee B et al. High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front. Immunol. 9, 1209–1209 (2018).
    • 51. Perenkov AD, Novikov DV, Sakharnov NA et al. [Heterogeneous expression of CD38 gene in tumor tissue in patients with colorectal cancer]. Mol. Biol. 46(5), 786–791 (2012).
    • 52. Zheng D, Liao S, Zhu G et al. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol. Carcinog. 55(3), 300–311 (2016).
    • 53. Ge Y, Long Y, Xiao S et al. CD38 affects the biological behavior and energy metabolism of nasopharyngeal carcinoma cells. Int. J. Oncol. 54(2), 585–599 (2019).
    • 54. Blacher E, Ben Baruch B, Levy A et al. Inhibition of glioma progression by a newly discovered CD38 inhibitor. Int. J. Cancer 136(6), 1422–1433 (2015).
    • 55. Chmielewski JP, Bowlby SC, Wheeler FB et al. CD38 inhibits prostate cancer metabolism and proliferation by reducing cellular NAD(+) pools. Mol. Cancer Res. 16(11), 1687–1700 (2018).
    • 56. Liao S, Xiao S, Zhu G et al. CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol. Rep. 32(6), 2703–2709 (2014).
    • 57. Liao S, Xiao S, Chen H et al. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol. Carcinog. 56(10), 2245–2257 (2017).
    • 58. Li Y, Lu Z, Che Y et al. Immune signature profiling identified predictive and prognostic factors for esophageal squamous cell carcinoma. Oncoimmunology 6(11), e1356147 (2017).
    • 59. Karimi-Busheri F, Zadorozhny V, Li T, Lin H, Shawler DL, Fakhrai H. Pivotal role of CD38 biomarker in combination with CD24, EpCAM, and ALDH for identification of H460 derived lung cancer stem cells. J. Stem Cells 6(1), 9–20 (2011).
    • 60. Bu X, Kato J, Hong JA et al. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis 39(2), 242–251 (2018).
    • 61. Ehlerding EB, England CG, Jiang D et al. CD38 as a PET imaging target in lung cancer. Mol. Pharm. 14(7), 2400–2406 (2017).
    • 62. Cotner T, Williams JM, Christenson L, Shapiro HM, Strom TB, Strominger J. Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. J. Exp. Med. 157(2), 461–472 (1983).
    • 63. Fox R, McMillan R, Spruce W, Tani P, Mason D. Analysis of T lymphocytes after bone marrow transplantation using monoclonal antibodies. Blood 60(3), 578–582 (1982).
    • 64. Burel JG, Apte SH, Groves PL, Klein K, McCarthy JS, Doolan DL. Reduced plasmodium parasite burden associates with CD38+ CD4+ T cells displaying cytolytic potential and impaired IFN-gamma production. PLoS Pathog. 12(9), e1005839 (2016).
    • 65. Chatterjee S, Daenthanasanmak A, Chakraborty P et al. CD38-NAD+axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab. 27(1), 85–100.e108 (2018).
    • 66. Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090), 235–238 (2006).
    • 67. Chen J, Chen YG, Reifsnyder PC et al. Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. J. Immunol. 176(8), 4590–4599 (2006).
    • 68. Hubert S, Rissiek B, Klages K et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J. Exp. Med. 207(12), 2561–2568 (2010).
    • 69. Feng X, Zhang L, Acharya C et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin. Cancer Res. 23(15), 4290–4300 (2017).
    • 70. Patton DT, Wilson MD, Rowan WC, Soond DR, Okkenhaug K. The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS ONE 6(3), e17359 (2011).
    • 71. Krejcik J, Casneuf T, Nijhof IS et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128(3), 384–394 (2016).
    • 72. Tai YT, Anderson KC. A new era of immune therapy in multiple myeloma. Blood 128(3), 318–319 (2016).
    • 73. Tai YT, Anderson KC. Targeting CD38 alleviates tumor-induced immunosuppression. Oncotarget 8(68), 112166–112167 (2017).
    • 74. Romero-Ramirez H, Morales-Guadarrama MT, Pelayo R, Lopez-Santiago R, Santos-Argumedo L. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology 144(2), 271–281 (2015).
    • 75. Kumagai M, Coustan-Smith E, Murray DJ et al. Ligation of CD38 suppresses human B lymphopoiesis. J. Exp. Med. 181(3), 1101–1110 (1995).
    • 76. Quach TD, Hopkins TJ, Holodick NE et al. Human B-1 and B-2 B cells develop from Lin-CD34+CD38lo stem cells. J. Immunol. 197(10), 3950–3958 (2016).
    • 77. Liu XQ, Hart DN, MacPherson GG, Good MF, Wykes MN. Soluble CD38 significantly prolongs the lifespan of memory B-cell responses. Immunology 125(1), 14–20 (2008).
    • 78. Hwang HS, Song JH, Hyoung BJ et al. Clinical impacts of CD38+ B cells on acute cellular rejection with CD20+ B cells in renal allograft. Transplantation 89(12), 1489–1495 (2010).
    • 79. Fedele G, Frasca L, Palazzo R, Ferrero E, Malavasi F, Ausiello CM. CD38 is expressed on human mature monocyte-derived dendritic cells and is functionally involved in CD83 expression and IL-12 induction. Eur. J. Immunol. 34(5), 1342–1350 (2004).
    • 80. Frasca L, Fedele G, Deaglio S et al. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood 107(6), 2392–2399 (2006).
    • 81. Viegas MS, Do Carmo A, Silva T et al. CD38 plays a role in effective containment of mycobacteria within granulomata and polarization of Th1 immune responses against Mycobacterium avium. Microbes Infect. 9(7), 847–854 (2007).
    • 82. Partida-Sanchez S, Gasser A, Fliegert R et al. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J. Immunol. 179(11), 7827–7839 (2007).
    • 83. Shu B, Feng Y, Gui Y et al. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cell. Signal. 42, 249–258 (2018).
    • 84. Kang J, Park KH, Kim JJ, Jo EK, Han MK, Kim UH. The role of CD38 in Fcγ receptor (FcγR)-mediated phagocytosis in murine macrophages. J. Biol. Chem. 287(18), 14502–14514 (2012).
    • 85. Mallone R, Funaro A, Zubiaur M et al. Signaling through CD38 induces NK cell activation. Int. Immunol. 13(4), 397–409 (2001).
    • 86. Sconocchia G, Titus JA, Mazzoni A et al. CD38 triggers cytotoxic responses in activated human natural killer cells. Blood 94(11), 3864–3871 (1999).
    • 87. Casneuf T, Xu XS, Adams HC 3rd et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 1(23), 2105–2114 (2017).
    • 88. Deaglio S, Zubiaur M, Gregorini A et al. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood 99(7), 2490–2498 (2002).
    • 89. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12(4), 253–268 (2012).
    • 90. Krejcik J, Casneuf T, Nijhof IS et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128(3), 384–394 (2016).
    • 91. Karakasheva TA, Waldron TJ, Eruslanov E et al. CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer. Cancer Res. 75(19), 4074–4085 (2015).
    • 92. Dilillo DJ, Ravetch JV. Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol. Res. 3(7), 704–713 (2015).
    • 93. Stevenson FK, Bell AJ, Cusack R et al. Preliminary studies for an immunotherapeutic approach to the treatment of human myeloma using chimeric anti-CD38 antibody. Blood 77(5), 1071–1079 (1991).
    • 94. Boussi L, Niesvizky R. Advances in immunotherapy in multiple myeloma. Curr. Opin. Oncol. 29(6), 460–466 (2017).
    • 95. De Weers M, Tai YT, Van Der Veer MS et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. 186(3), 1840–1848 (2011).
    • 96. Overdijk MB, Verploegen S, Bogels M et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7(2), 311–321 (2015).
    • 97. Van De Donk NW, Moreau P, Plesner T et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood 127(6), 681–695 (2016).
    • 98. Laubach JP, Richardson PG. CD38-targeted immunochemotherapy in refractory multiple myeloma: a new horizon. Clin. Cancer Res. 21(12), 2660–2662 (2015).
    • 99. Magarotto V, Salvini M, Bonello F, Bringhen S, Palumbo A. Strategy for the treatment of multiple myeloma utilizing monoclonal antibodies: a new era begins. Leuk. Lymphoma 57(3), 537–556 (2016).
    • 100. Raje N, Longo DL. Monoclonal antibodies in multiple myeloma come of age. N. Engl. J. Med. 373(13), 1264–1266 (2015).
    • 101. Bride KL, Vincent TL, Im SY et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia (T-ALL). Blood 131(9), 995–999 (2018).
    • 102. Verma V, Shrimali RK, Ahmad S et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20(9), 1231–1243 (2019).
    • 103. Chen L, Diao L, Yang Y et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 8(9), 1156–1175 (2018). •• We concluded in this article that dual blockading of CD38 and anti-PD-1(anti-PD-L1) is a rational combination to prevent immune resistance to PD-1/PD-L1 checkpoint therapy and improve the response rate and treatment efficacy for lung cancer patients.
    • 104. Malavasi F, Faini AC. Mechanism of action of a new anti-CD38 antibody: enhancing myeloma immunotherapy. Clin. Cancer Res. 25(10), 2946–2948 (2019). •• This review discussed the different effects exerted by the same antibody on the tumor target and simultaneously with effector cells with multiple functions.