We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Immunotherapy combinations for the treatment of patients with solid tumors

    Maria Virginia Bluthgen

    Medical Oncology, Hospital Alemán de Buenos Aires, 1118, Argentina

    ,
    Neus Basté

    Medical Oncology, Hospital Clinic de Barcelona, 08036, Spain

    &
    Gonzalo Recondo

    *Author for correspondence: Tel.: +54 011 5299 0600; Ext.: 5060; Fax: +54 011 5299 1580;

    E-mail Address: grecondoh@cemic.edu.ar

    Medical Oncology, Centro de Educación Médica e Investigaciones Clinicas (CEMIC), Buenos Aires 1431, Argentina

    Published Online:https://doi.org/10.2217/fon-2020-0303

    Immune checkpoint inhibitors directed against CTLA-4, PD-1 and PD-L1 have transformed the treatment of patients with cancer. Immunotherapy regimens have evolved from a single agent approach to the combination of immune checkpoint inhibitors like anti CTLA-4 and PD-1, immune checkpoint blockade combined with chemotherapy, anti-angiogenic agents and kinase inhibitors. These synergistic combinations were developed to heighten the potency and duration of immune responses against cancer cells. Hence, immunotherapy combinations have shaped the landscape of therapeutic options against a wide range of cancer types, and are current standard treatment regimens worldwide. In this review, we describe the clinical evidence supporting the use of immunotherapy combination regimens for the treatment of patients with solid tumors.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Duan J, Cui L, Zhao X et al. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: a systematic review and meta-analysis. JAMA Oncol. 6(3), 375–384 (2019).
    • 2. Sun L, Zhang L, Yu J et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci. Rep. 10(1), 2083 (2020).
    • 3. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107(9), 4275–4280 (2010).
    • 4. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4(5), 336–347 (2004).
    • 5. Lee KM, Chuang E, Griffin M et al. Molecular basis of T cell inactivation by CTLA-4. Science 282(5397), 2263–2266 (1998).
    • 6. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).
    • 7. Gotwals P, Cameron S, Cipolletta D et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer. 17(5), 286–301 (2017).
    • 8. Attili I, Passaro A, Pavan A, Conte P, De Marinis F, Bonanno L. Combination immunotherapy strategies in advanced non-small cell lung cancer (NSCLC): does biological rationale meet clinical needs? Crit. Rev. Oncol. Hematol. 119, 30–39 (2017).
    • 9. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14(8), 561–584 (2015).
    • 10. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 541(7637), 321–330 (2017).
    • 11. Liu P, Zhao L, Pol J et al. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat. Commun. 10(1), 1486 (2019).
    • 12. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15(5), 310–324 (2018).
    • 13. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8(9), 1069–1086 (2018).
    • 14. Wolchok JD, Chiarion-Sileni V, Gonzalez R et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377(14), 1345–1356 (2017). •• CheckMate 067 was the first study to show improved survival with the combination ipilimumab and nivolumab establishing a standard first line treatment option for patients with metastatic melanoma.
    • 15. Long GV, Atkinson V, Cebon JS et al. Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet. Oncol. 18(9), 1202–1210 (2017).
    • 16. Tannir NM, Frontera OA, Hammers HJ et al. Thirty-month follow-up of the Phase III CheckMate 214 trial of first-line nivolumab + ipilimumab (N+I) or sunitinib (S) in patients (pts) with advanced renal cell carcinoma (aRCC). J. Clin. Oncol. 37(Suppl. 7), 547 (2019).
    • 17. Overman MJ, Lonardi S, Wong KYM et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 36(8), 773–779 (2018).
    • 18. Hellmann MD, Paz-Ares L, Bernabe Caro R et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381(21), 2020–2031 (2019).
    • 19. Peters S, Cho BC, Reinmuth N et al. Abstract CT074: tumor mutational burden (TMB) as a biomarker of survival in metastatic non-small cell lung cancer (mNSCLC): blood and tissue TMB analysis from MYSTIC, a Phase III study of first-line durvalumab ± tremelimumab vs chemotherapy. Cancer Res. 79(Suppl. 13), CT074 LP-CT074 (2019).
    • 20. Owonikoko TK, Kim HR, Govindan R et al. Nivolumab (nivo) plus ipilimumab (ipi), nivo, or placebo (pbo) as maintenance therapy in patients (pts) with extensive disease small cell lung cancer (ED-SCLC) after first-line (1L) platinum-based chemotherapy (chemo): results from the double-blind, rand. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 30(Suppl. 2), ii77 (2019).
    • 21. Licitra LF, Haddad RI, Even C et al. EAGLE: a Phase III, randomized, open-label study of durvalumab (D) with or without tremelimumab (T) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). J. Clin. Oncol. 37(Suppl. 15), 6012 (2019).
    • 22. Falkson CI, Ibrahim J, Kirkwood JM, Coates AS, Atkins MB, Blum RH. Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Groups. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 16(5), 1743–1751 (1998).
    • 23. Hodi FS, O'Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
    • 24. Schadendorf D, Hodi FS, Robert C et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33(17), 1889–1894 (2015).
    • 25. Weber JS, D'Angelo SP, Minor D et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, Phase III trial. Lancet. Oncol. 16(4), 375–384 (2015).
    • 26. Robert C, Long GV, Brady B et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372(4), 320–330 (2015).
    • 27. Schachter J, Ribas A, Long GV et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label Phase III study (KEYNOTE-006). Lancet 390(10105), 1853–1862 (2017).
    • 28. Robert C, Ribas A, Schachter J et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, Phase III study. Lancet. Oncol. 20(9), 1239–1251 (2019).
    • 29. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381(16), 1535–1546 (2019).
    • 30. Motzer RJ, Escudier B, McDermott DF et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373(19), 1803–1813 (2015).
    • 31. Rini BI, Plimack ER, Stus V et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380(12), 1116–1127 (2019).
    • 32. Motzer RJ, Penkov K, Haanen J et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380(12), 1103–1115 (2019).
    • 33. Motzer RJ, Tannir NM, McDermott DF et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378(14), 1277–1290 (2018). • CheckMate 214 shows improved survival with the combination ipilimumab and nivolumab establishing an effective first-line treatment option for patients with poor risk metastatic renal cancer.
    • 34. Germano G, Amirouchene-Angelozzi N, Rospo G, Bardelli A. The clinical impact of the genomic landscape of mismatch repair-deficient cancers. Cancer Discov. 8(12), 1518–1528 (2018).
    • 35. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 57(21), 4749–4756 (1997).
    • 36. Koopman M, Kortman GAM, Mekenkamp L et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100(2), 266–273 (2009).
    • 37. Kandoth C, Schultz N, Cherniack AD et al. Integrated genomic characterization of endometrial carcinoma. Nature 497(7447), 67–73 (2013).
    • 38. Bonneville R, Krook MA, Kautto EA et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. Vol1 (2017).
    • 39. Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of mutational processes in human cancer. Nature 500(7463), 415–421 (2013).
    • 40. Kloor M, von Knebel Doeberitz M. The immune biology of microsatellite-unstable cancer. Trends in Cancer 2(3), 121–133 (2016).
    • 41. Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91(12), 2417–2422 (2001).
    • 42. Le DT, Uram JN, Wang H et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372(26), 2509–2520 (2015).
    • 43. Overman MJ, McDermott R, Leach JL et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, Phase II study. Lancet. Oncol. 18(9), 1182–1191 (2017).
    • 44. Collaboration GB of DC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 5(12), 1749–1768 (2019).
    • 45. Ramalingam SS, Yang JC-H, Lee CK et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J. Clin. Oncol. JCO2017747576 (2017).
    • 46. Peters S, Camidge DR, Shaw AT et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377(9), 829–838 (2017).
    • 47. Brahmer J, Reckamp KL, Baas P et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373(2), 123–135 (2015).
    • 48. Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373(17), 1627–1639 (2015).
    • 49. Reck M, Rodriguez-Abreu D, Robinson AG et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375(19), 1823–1833 (2016).
    • 50. Reck M, Rodriguez-Abreu D, Robinson AG et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 37(7), 537–546 (2019).
    • 51. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378(22), 2078–2092 (2018). •• KEYNOTE 189 was the first study to demonstrate a survival benefit for chemoimmunotherapy combination in metastatic nonsquamous NSCLC establishing the standard first-line treatment for unselected patients.
    • 52. Mok TSK, Wu Y-L, Kudaba I et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, Phase III trial. Lancet 393(10183), 1819–1830 (2019).
    • 53. Hellmann MD, Rizvi NA, Goldman JW et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, Phase I, multicohort study. Lancet Oncol. 18(1), 31–41 (2017).
    • 54. Vokes NI, Liu D, Ricciuti B et al. Harmonization of tumor mutational burden quantification and association with response to immune checkpoint blockade in non-small-cell lung cancer. JCO Precis. Oncol. 3, 1–12 (2019).
    • 55. Horn L, Mansfield AS, Szczesna A et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379(23), 2220–2229 (2018). •• The IMpower133 is the first study showing improved survival with chemoimmunotherapy establishing a new standard of care beyond platinum-etoposide regimens that have been the sole treatment option for patients with advanced SCLC since the 1980s.
    • 56. Paz-Ares L, Dvorkin M, Chen Y et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, Phase III trial. Lancet. 394(10212), 1929–1939 (2019).
    • 57. Ready NE, Ott PA, Hellmann MD et al. Nivolumab monotherapy and nivolumab plus ipilimumab in recurrent small cell lung cancer: results from the CheckMate 032 randomized cohort. J. Thorac. Oncol. 15(3), 426–435 (2019).
    • 58. Hellmann MD, Callahan MK, Awad MM et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 33(5), 853–861.e4 (2018).
    • 59. Vermorken JB, Mesia R, Rivera F et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359(11), 1116–1127 (2008).
    • 60. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377(25), 2500–2501 (2017).
    • 61. Oliva M, Spreafico A, Taberna M et al. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann. Oncol. 30(1), 57–67 (2019).
    • 62. Ferris RL, Licitra L, Fayette J et al. Nivolumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: efficacy and safety in CheckMate 141 by prior cetuximab use. Clin. Cancer Res. An Off. J. Am. Assoc. Cancer Res. 25(17), 5221–5230 (2019).
    • 63. Chung HC, Ros W, Delord JP et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the Phase II KEYNOTE-158 study. J. Clin. Oncol. 37(17), 1470–1478 (2019).
    • 64. Naumann RW, Oaknin A, Meyer T et al. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: results from CheckMate 358. Proc. Eur. Soc. Med. Oncol. 30(Suppl. 5), v851–v934 (2019).
    • 65. Kim TJ, Cho KS, Koo KC. Current status and future perspectives of immunotherapy for locally advanced or metastatic urothelial carcinoma: a comprehensive review. Cancers 12(1), 192 (2020).
    • 66. Sharma P, Siefker-Radtke A, de Braud F et al. Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: CheckMate 032 nivolumab 1 mg/kg plus ipilimumab 3 mg/kg expansion cohort results. J. Clin. Oncol. 37(19), 1608–1616 (2019).
    • 67. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J. Cell. Mol. Med. 23(8), 4854–4865 (2019).
    • 68. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1), 74–88 (2013).
    • 69. Roselli M, Cereda V, di Bari MG et al. Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology 2(10), e27025 (2013).
    • 70. Peng J, Hamanishi J, Matsumura N et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-B to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 75(23), 5034–5045 (2015).
    • 71. Dumoulin DW, Visser S, Cornelissen R et al. Renal toxicity from pemetrexed and pembrolizumab in the era of combination therapy in patients with metastatic non-squamous cell NSCLC. J. Thorac. Oncol. (2020). https://www.sciencedirect.com/science/article/pii/S1556086420303361
    • 72. West H, McCleod M, Hussein M et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, Phase III tria. Lancet Oncol. 20(7), 924–937 (2019).
    • 73. Socinski MA, Jotte RM, Cappuzzo F et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378(24), 2288–2301 (2018).
    • 74. Paz-Ares L, Luft A, Vicente D et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379(21), 2040–2051 (2018). •• KEYNOTE 407 was the first study to demonstrate a survival benefit for chemoimmunotherapy combination in metastatic squamous NSCLC establishing the standard first-line treatment for unselected patients.
    • 75. Papadimitrakopoulou V, Cobo M, Bordoni R et al. OA05.07 IMpower132: PFS and safety results with 1L atezolizumab + carboplatin/cisplatin + pemetrexed in stage iv non-squamous NSCLC. J. Thorac. Oncol. 13(10), S332–S333 (2018).
    • 76. Cortés J, Lipatov O, Im S-A et al. LBA21 – KEYNOTE-119: Phase III study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC). Ann. Oncol. 30, v859–v860 (2019).
    • 77. Schmid P, Adams S, Rugo HS et al. IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) + nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mT). J. Clin. Oncol. 37(Suppl. 15), 1003 (2019).
    • 78. Gadgeel S, Garassino MC, Esteban E et al. O.03 KEYNOTE-189: OS update and progression after the next line of therapy (PFS2) with pembrolizumab + chemotherapy for metastatic nonsquamous NSCLC. J. Thorac. Oncol. 14(11), S1153 (2019).
    • 79. Gadgeel S, Rodríguez-Abreu D, Speranza G et al. Updated analysis from KEYNOTE 189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. J. Clin. Oncol. 38(14), 1505–1517 (2020).
    • 80. Jotte R, Cappuzzo F, Vynnychenko I et al. OA14.02 IMpower131: final OS results of carboplatin + nab-paclitaxel ± atezolizumab in advanced squamous NSCLC. J. Thorac. Oncol. 14(10), S243–S244 (2019).
    • 81. Reck M, Ciuleanu T-E, Dols MC et al. Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA. J. Clin. Oncol. 38(15_suppl), 9501 (2020).
    • 82. Aguilar EJ, Ricciuti B, Gainor JF et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 30(10), 1653–1659 (2019).
    • 83. Provencio-Pulla M, Nadal-Alforja E, Cobo M et al. Neoadjuvant chemo/immunotherapy for the treatment of stages IIIA resectable non-small cell lung cancer (NSCLC): a Phase II multicenter exploratory study-NADIM study-SLCG. J. Clin. Oncol. 36(Suppl. 15), 8521 (2018).
    • 84. Peters S, Felip E, Dafni U et al. Safety evaluation of nivolumab added concurrently to radiotherapy in a standard first line chemo-radiotherapy regimen in stage III non-small cell lung cancer-The ETOP NICOLAS trial. Lung Cancer 133, 83–87 (2019).
    • 85. Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: clinical features and patterns of recurrence metastatic TNBC. Clin. Cancer Res. 13(15 Pt 1), 4429–4434 (2007).
    • 86. Zeichner SB, Terawaki H, Gogineni K. A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer (Auckl). 10, 25–36 (2016).
    • 87. Caulfield SE, Davis CC, Byers KF. Olaparib: a novel therapy for metastatic breast cancer in patients with a BRCA1/2 mutation. J. Adv. Pract. Oncol. 10(2), 167–174 (2019).
    • 88. Kim I, Sanchez K, McArthur HL, Page D. Immunotherapy in triple-negative breast cancer: present and future. Curr. Breast Cancer Rep. 11(4), 259–271 (2019).
    • 89. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379(22), 2108–2121 (2018). • The IMpassion 130 established this regimen as first-line therapy for patients with PD-L1-positive breast cancer and is the current standard of care regimen for patients with advanced TNBC.
    • 90. Burtness B, Harrington KJ, Greil R et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, Phase III study. Lancet 394(10212), 1915–1928 (2019). •• This trial established pembrolizumab monotherapy and/or combination with chemotherapy as a standard first-line option for recurrent or metastatic SCCHN.
    • 91. Cancer Genome Atlas Network Genomic classification of cutaneous melanoma. Cell 161(7), 1681–1696 (2015).
    • 92. Robert C, Grob JJ, Stroyakovskiy D et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N. Engl. J. Med. 381(7), 626–636 (2019).
    • 93. Ribas A, Daud A, Pavlick AC et al. Extended 5-year follow-up results of a Phase Ib study (BRIM7) of vemurafenib and cobimetinib in BRAF-mutant melanoma. Clin. Cancer Res. 26(1), 46–53 (2020).
    • 94. Frederick DT, Piris A, Cogdill AP et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. An Off. J. Am. Assoc. Cancer Res. 19(5), 1225–1231 (2013).
    • 95. Koya RC, Mok S, Otte N et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res. 72(16), 3928–3937 (2012).
    • 96. Song C, Piva M, Sun L et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKi-induced melanoma regression and early adaptation. Cancer Discov. 7(11), 1248–1265 (2017).
    • 97. Kuske M, Westphal D, Wehner R et al. Immunomodulatory effects of BRAF and MEK inhibitors: implications for melanoma therapy. Pharmacol. Res. 136, 151–159 (2018).
    • 98. Karachaliou N, Pilotto S, Teixidó C et al. Melanoma: oncogenic drivers and the immune system. Ann. Transl. Med. 3(18), 265 (2015).
    • 99. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368(14), 1365–1366 (2013).
    • 100. Minor DR, Puzanov I, Callahan MK, Hug BA, Hoos A. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell Melanoma Res. 28(5), 611–612 (2015).
    • 101. Ascierto PA, Ferrucci PF, Fisher R et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 25(6), 941–946 (2019).
    • 102. Sullivan RJ, Hamid O, Gonzalez R et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nat. Med. 25(6), 929–935 (2019).
    • 103. Mazieres J, Drilon A, Lusque A et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 30(8), 1321–1328 (2019).
    • 104. Gettinger S, Hellmann MD, Chow LQM et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 13(9), 1363–1372 (2018).
    • 105. Oxnard GR, Yang JC-H, Yu H et al. TATTON: a multi-arm, Phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 31(4), 507–516 (2020).
    • 106. Spigel DR, Reynolds C, Waterhouse D et al. Phase I/II study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of ALK translocation-positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. (2018).
    • 107. Kim D-W, Gadgeel SM, Gettinger SN et al. Safety and clinical activity results from a Phase Ib study of alectinib plus atezolizumab in ALK+ advanced NSCLC (aNSCLC). J. Clin. Oncol. 36(Suppl. 15), 9009 (2018).
    • 108. Shaw AT et al. Avelumab (anti-PD-L1) in combination with crizotinib or lorlatinib in patients with previously treated advanced NSCLC: Phase 1b results from JAVELIN Lung 101. J. Clin. Oncol. 36, (Suppl. 15), 9008–9008 (2018).
    • 109. Recondo G, Facchinetti F, Olaussen KA, Besse B, Friboulet L. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat. Rev. Clin. Oncol. 15(11), 694–708 (2018).
    • 110. Reck M, Mok TSK, Nishio M et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label Phase III trial. Lancet. Respir. Med. 7(5), 387–401 (2019).
    • 111. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
    • 112. Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11(10), 702–711 (2011).
    • 113. Wallin JJ, Bendell JC, Funke R et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 7, 12624 (2016).
    • 114. Finn RS, Qin S, Ikeda M et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med 382(20), 1894–1905 (2020).
    • 115. Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356(2), 115–124 (2007).
    • 116. Motzer RJ, Hutson TE, Cella D et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369(8), 722–731 (2013).
    • 117. Motzer RJ, Escudier B, Tomczak P et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised Phase III trial. Lancet. Oncol. 14(6), 552–562 (2013).
    • 118. Morse MA, Sun W, Kim R et al. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res. An Off. J. Am. Assoc. Cancer Res. 25(3), 912–920 (2019).
    • 119. Rini BI, Powles T, Atkins MB et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, Phase III, randomised controlled trial. Lancet 393(10189), 2404–2415 (2019).
    • 120. McGregor BA, McKay RR, Braun DA et al. Results of a multicenter Phase II study of atezolizumab and bevacizumab for patients with metastatic renal cell carcinoma with variant histology and/or sarcomatoid features. J. Clin. Oncol. 38(1), 63–70 (2019).
    • 121. Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008).
    • 122. Finn RS, Ducreux M, Qin S et al. IMbrave150: a randomized Phase III study of 1L atezolizumab plus bevacizumab vs sorafenib in locally advanced or metastatic hepatocellular carcinoma. J. Clin. Oncol. 36(Suppl. 15), TPS4141–TPS4141 (2018). •• This trial established a new SOC for patients with unresectable HCC.
    • 123. Makker V, Rasco D, Vogelzang NJ et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, Phase II trial. Lancet. Oncol. 20(5), 711–718 (2019).
    • 124. Brose MS, Vogelzang NJ, DiSimone C et al. A Phase Ib/II trial of lenvatinib plus pembrolizumab in non-small cell lung cancer. J. Clin. Oncol. 37(Suppl. 8), 16 (2019).
    • 125. Liang H, Wang M. Prospect of immunotherapy combined with anti-angiogenic agents in patients with advanced non-small cell lung cancer. Cancer Manag. Res. 11, 7707–7719 (2019).
    • 126. Hodi FS, Chesney J, Pavlick AC et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, Phase II trial. Lancet Oncol. 17(11), 1558–1568 (2016).
    • 127. Insinga RP, Vanness DJ, Feliciano JL, Vandormael K, Traore S, Burke T. Cost-effectiveness of pembrolizumab in combination with chemotherapy in the 1st line treatment of non-squamous NSCLC in the US. J. Med. Econ. 21(12), 1191–1205 (2018).
    • 128. Meléndez B, Van Campenhout C, Rorive S, Remmelink M, Salmon I, D'Haene N. Methods of measurement for tumor mutational burden in tumor tissue. Transl. Lung Cancer Res. 7(6), 661–667 (2018).
    • 129. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19(3), 133–150 (2019).
    • 130. Yarchoan M, Albacker LA, Hopkins AC et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cu pancers. JCI Insight 4(6), e126908 (2019).
    • 131. Kather JN, Suarez-Carmona M, Charoentong P et al. Topography of cancer-associated immune cells in human solid tumors. Elife 7, e36967 (2018).
    • 132. Fehrenbacher L, Spira A, Ballinger M et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, Phase II randomised controlled trial. Lancet 387(10030), 1837–1846 (2016).
    • 133. Vargas FA, Furness AJS, Litchfield K et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33(4), 649–663.e4 (2018).
    • 134. Zhu J, Pabla S, Labriola M et al. Evaluation of tumor microenvironment and biomarkers of immune checkpoint inhibitor (ICI) response in metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 37(Suppl. 15), 2595–2595 (2019).
    • 135. Rodig SJ, Gusenleitner D, Jackson DG et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10(450), eaar3342 (2018).
    • 136. Skoulidis F, Goldberg ME, Greenawalt DM et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8(7), 822–835 (2018).
    • 137. Skoulidis F, Arbour KC, Hellmann MD et al. Association of STK11/LKB1 genomic alterations with lack of benefit from the addition of pembrolizumab to platinum doublet chemotherapy in non-squamous non-small cell lung cancer. J. Clin. Oncol. 37(Suppl. 15), 102 (2019).
    • 138. Mezquita L, Auclin E, Ferrara R et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 4(3), 351 (2018).
    • 139. Mezquita L, Arbour K, Auclin E et al. 1407PDerived neutrophil-to lymphocyte ratio (dNLR) change between baseline and cycle 2 is correlated with benefit during immune checkpoint inhibitors (ICI) in advanced non-small cell lung cancer (NSCLC) patients. Ann. Oncol. 29(Suppl. 8), (2018).
    • 140. Routy B, Le Chatelier E, Derosa L et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371), 91–97 (2018).
    • 141. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18(3), 197–218 (2019).
    • 142. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18(1), 155 (2019).