We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Using biomarkers to determine optimal combinations with immunotherapy (biomarker discovery perspective)

    Cristina Teixido

    *Author for correspondence:

    E-mail Address: teixido@clinic.cat

    Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, IDIBAPS, Villarroel 170, Barcelona, 08036, Spain

    &
    Noemi Reguart

    Department of Medical Oncology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, IDIBAPS, Villarroel 170, Barcelona 08036, Spain

    Published Online:https://doi.org/10.2217/fon-2020-0171
    Free first page

    References

    • 1. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer. 19(3), 133–150 (2019).
    • 2. Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28(19), 3167–3175 (2010).
    • 3. Davis AA, Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 7(1), 278 (2019).
    • 4. Reck M, Rodríguez-Abreu D, Robinson AG et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375(19), 1823–1833 (2016).
    • 5. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378(22), 2078–2092 (2018).
    • 6. Paz-Ares L, Luft A, Vicente D, Tafreshi A et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379(21), 2040–2051 (2018).
    • 7. Schmid P, Rugo HS, Adams S et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, Phase III trial. Lancet Oncol. 21(1), 44–59 (2019).
    • 8. Burtness B, Harrington KJ, Greil R et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394(10212), 1915–1928 (2019).
    • 9. Chung HC, Ros W, Delord JP et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the Phase II KEYNOTE-158 study. J. Clin. Oncol. 37(17), 1470–1478 (2019).
    • 10. Luchini C, Bibeau F, Ligtenberg MJL et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann. Oncol. 30(8), 1232–1243 (2019).
    • 11. Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349), 409–413 (2017).
    • 12. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377(25), 2500–2501 (2017).
    • 13. George AP, Kuzel TM, Zhang Y et al. The discovery of biomarkers in cancer immunotherapy. Comput. Struct. Biotechnol. J. 17, 484–497 (2019).
    • 14. Fancello L, Gandini S, Pelicci PG et al. Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J. Immunother. Cancer 7(1), 183 (2019).
    • 15. Büttner R, Longshore JW, López-Ríos F et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open 4(1), e000442 (2019).
    • 16. Skoulidis F, Arbour KC, Hellmann MD et al. Association of STK11/LKB1 genomic alterations with lack of benefit from the addition of pembrolizumab to platinum doublet chemotherapy in non-squamous non-small cell lung cancer. J. Clin. Oncol. 37(Suppl. 15), 102 (2019).
    • 17. Mezquita L, Gataa I, Rossoni C et al. MA25.03 tumor-infiltrating lymphocytes (TIL) and outcomes with immunotherapy (ICI) or chemotherapy in advanced NSCLC (aNSCLC) patients. J. Thorac. Oncol. 14(10), S351–S352 (2019).
    • 18. Mariathasan S, Turley SJ, Nickles D et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693), 544–548 (2018).
    • 19. Ayers M, Lunceford J, Nebozhyn M et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127(8), 2930–2940 (2017).
    • 20. Arora S, Velichinskii R, Lesh RW et al. Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv. Ther. 36(10), 2638–2678 (2019).