We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pembrolizumab plus axitinib combination and the paradigm change in the treatment of advanced renal cell carcinoma

    Martina Spisarová

    Department of Oncology, Palacký University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic

    ,
    Bohuslav Melichar

    Department of Oncology, Palacký University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic

    Institute of Molecular & Translational Medicine, Palacký University Medical School Teaching Hospital, 77900 Olomouc, Czech Republic

    ,
    Denisa Vitásková

    Department of Oncology, Palacký University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic

    &
    Hana Študentová

    *Author for correspondence: Tel.: +420 588 444 288;

    E-mail Address: hana.studentova@fnol.cz

    Department of Oncology, Palacký University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic

    Published Online:https://doi.org/10.2217/fon-2020-0079

    Sequential administration of single targeted agents has been challenged as the dominant treatment paradigm in patients with metastatic renal cell carcinoma by improved outcomes obtained with combination regimens based on immune checkpoint inhibitors. Most patients treated with sequential monotherapy eventually develop drug resistance and succumb to progressive disease, leading to the search for therapies that would overcome drug resistance and result in a more durable treatment response. Improved outcomes have been demonstrated in Phase III trials in comparison with sunitinib for the combinations of axitinib plus pembrolizumab, axitinib plus avelumab, bevacizumab plus atezolizumab and ipilimumab plus nivolumab. A statistically significant improvement of both progression-free and overall survival has been demonstrated for the axitinib plus pembrolizumab combination.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Yagoda A, Petrylak D, Thompson S. Cytotoxic chemotherapy for advanced renal cell carcinoma. Urol. Clin. North Am. 20, 303–321 (1993).
    • 2. Medical Research Council Renal Cancer Collaborators. Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Lancet 353, 14–17 (1999).
    • 3. Pyrhonen S, Salminen E, Ruutu M et al. Prospective randomized trial of interferon alfa-2a plus vinblastine versus vinblastine alone in patients with advanced renal cell cancer. J. Clin. Oncol. 17, 2859–2867 (1999).
    • 4. Fyfe G, Fisher RI, Rosenberg SA et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).
    • 5. McDermott DF, Regan MM, Clark JI et al. Randomized Phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23, 133–141 (2005).
    • 6. Motzer RJ, Mazumdar M, Bacik J et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 17, 2530–2540 (1999).
    • 7. Ko JJ, Xie WL, Kroeger N et al. International Metastatic Renal Cell Carcinoma Database Consortium model as a prognostic tool in patients with metastatic renal cell carcinoma previously treated with first-line targeted therapy: a population-based study. Lancet Oncol. 16(3), 293–300 (2015).
    • 8. Brugarolas J. Renal-cell carcinoma – molecular pathways and therapies. N. Engl. J. Med. 356(2), 185–187 (2007).
    • 9. Escudier B, Bellmunt J, Negrier S et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28(13), 2144–2150 (2010).
    • 10. Rini BI, Halabi S, Rosenberg JE et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).
    • 11. Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007). • Principal report of the trial that established sunitinib as the standard of care in metastatic renal cell carcinoma for more than a decade. Sunitinib monotherapy is the comparator arm in all Phase 3 trials of immune checkpoint inhibitor-based combination therapy.
    • 12. Sternberg CN, Davis ID, Mardiak J et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized Phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).
    • 13. Buchler T, Bortlicek Z, Poprach A et al. Outcomes for patients with metastatic renal cell carcinoma achieving a complete response on targeted therapy: a registry-based analysis. Eur. Urol. 70(3), 469–475 (2016).
    • 14. Buchler T, Poprach A, Bortlicek Z et al. Outcomes of patients with long-term treatment response to vascular endothelial growth factor-targeted therapy for metastatic renal cell cancer. Clin. Genitourin. Cancer 15(6), E1047–E1053 (2017).
    • 15. Hudes G, Carducci M, Tomczak P et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).
    • 16. Motzer RJ, Escudier B, Oudard S et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled Phase III trial. Lancet 372, 449–456 (2008).
    • 17. Choueiri TK, Escudier B, Powles T et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373(19), 1814–1823 (2015).
    • 18. Motzer RJ, Escudier B, McDermott DF et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373(19), 1803–1813 (2015).
    • 19. Motzer RJ, Nosov D, Eisen T et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a Phase III trial. J. Clin. Oncol. 31(30), 3791–3799 (2013).
    • 20. Choueiri TK, Halabi S, Sanford BL et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN trial. J. Clin. Oncol. 35(6), 591–597 (2017).
    • 21. Escudier B, Pluzanska A, Koralewski P et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind Phase III trial. Lancet 370, 2103–2111 (2007).
    • 22. Studentova H, Vitaskova D, Melichar B. Lenvatinib for the treatment of kidney cancer. Expert Rev. Anticancer Ther. 18(6), 511–518 (2018).
    • 23. Buchler T, Klapka R, Melichar B et al. Sunitinib followed by sorafenib or vice versa for metastatic renal cell carcinoma – data from the Czech registry. Ann. Oncol. 23, 395–401 (2012).
    • 24. Huang H, Langenkamp E, Georganaki M et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappa B-induced endothelial activation. FASEB J. 29(1), 227–238 (2015).
    • 25. Alfaro C, Suarez N, Gonzalez A et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer 100(7), 1111–1119 (2009).
    • 26. Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).
    • 27. McDermott DF, Huseni MA, Atkins MB et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24(12), 749–757 (2018).
    • 28. Amin A, Plimack ER, Ernstoff MS et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer 22(6), 109 (2018).
    • 29. Rini BI, Plimack ER, Stus V et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380(12), 1116–1127 (2019). •• Primary report of the KEYNOTE-426 trial that established the combination of pembrolizumab with axitinib.
    • 30. Motzer RJ, Penkov K, Haanen J et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380(12), 1103–1115 (2019). •• Primary report of efficacy of the combination of avelumab with axitinib, a competitor of the pembrolizumab plus axitinib combination.
    • 31. Rini BI, Powles T, Atkins MB et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, Phase 3, randomised controlled trial. Lancet 393(10189), 2404–2415 (2019). •• Primary report of IMmotion151, a Phase 3 trial investigating the efficacy of the combination of atezolizumab with bevacizumab, a competitor of the pembrolizumab plus axitinib combination.
    • 32. Motzer RJ, Tannir NM, McDermott DF et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378(14), 1277–1290 (2018). •• Primary report of the CheckMate 214 trial demonstrating efficacy of the combination of nivolumab with ipilimumab, the key competitor of the pembrolizumab plus axitinib combination.
    • 33. Motzer R, Rini BI, McDermott DF et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, Phase 3 trial. Lancet Oncol. 20(10), 1370–1385 (2019).
    • 34. Dudani S, Graham J, Wells JC et al. First-line immuno-oncology combination therapies in metastatic renal-cell carcinoma: results from the International Metastatic Renal-Cell Carcinoma Database Consortium. Eur. Urol. 76(6), 861–867 (2019).
    • 35. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373(1), 23–34 (2015).
    • 36. Ascierto PA, Ferrucci PF, Fisher R et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 25(6), 941–946 (2019).
    • 37. Sullivan RJ, Hamid O, Gonzalez R et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nat. Med. 25(6), 929–935 (2019).
    • 38. Motzer RJ, Hutson TE, Tomczak P et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).
    • 39. Motzer RJ, Hutson TE, Glen H et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, Phase 2, open-label, multicentre trial. Lancet Oncol. 16(15), 1473–1482 (2015).
    • 40. Atzpodien J, Kirchner H, Hanninen EL et al. Interleukin-2 in combination with interferon-alpha and 5-fluorouracil for metastatic renal cell cancer. Eur. J. Cancer 29A, S6–S8 (1993).
    • 41. Grunwald V, Powles T, Choueiri TK et al. Lenvatinib plus everolimus or pembrolizumab versus sunitinib in advanced renal cell carcinoma: study design and rationale. Future Oncol. 15(9), 929–941 (2019).
    • 42. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
    • 43. Melichar B, Freedman RS. Immunology of the peritoneal cavity: relevance for host-tumor relation. Int. J. Gynecol. Cancer 12, 3–17 (2002).
    • 44. Melichar B, Nash MA, Lenzi R et al. Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumor infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin. Exp. Immunol. 119, 19–27 (2000).
    • 45. Melichar B, Jandik P, Krejsek J et al. Mitogen-induced lymphocyte proliferation and systemic immune activation in cancer patients. Tumori 82, 218–220 (1996).
    • 46. Melichar B, Touskova M, Solichova D et al. CD4+ T-lymphocytopenia and systemic immune activation in patients with primary and secondary liver tumours. Scand. J. Clin. Lab. Invest. 61, 363–370 (2001).
    • 47. Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).
    • 48. Motzer RJ, Rini BI, Bukowski RM et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516–2524 (2006).
    • 49. Rini BI, Escudier B, Tomczak P et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised Phase 3 trial. Lancet 378, 1931–1939 (2011).
    • 50. Shah AY, Kotecha RR, Lemke EA et al. Outcomes of patients with metastatic clear-cell renal cell carcinoma treated with second-line VEGFR-TKI after first-line immune checkpoint inhibitors. Eur. J. Cancer 114, 67–75 (2019).
    • 51. Escudier B, Motzer RJ, Sharma P et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur. Urol. 72(3), 368–376 (2017).
    • 52. Ott PA, Bang YJ, Piha-Paul SA et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 37(4), 318–327 (2019).
    • 53. Reck M, Rodriguez-Abreu D, Robinson AG et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375(19), 1823–1833 (2016).
    • 54. Robert C, Schachter J, Long GV et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 272, 2521–2532 (2015).
    • 55. Patnaik A, Kang SP, Rasco D et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin. Cancer Res. 21(19), 4286–4293 (2015).
    • 56. Chen Y, Tortorici MA, Garrett M et al. Clinical pharmacology of axitinib. Clin. Pharmacokinet. 52(9), 713–725 (2013).
    • 57. Hutson TE, Lesovoy V, Al-Shukri S et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label Phase 3 trial. Lancet Oncol. 14(13), 1287–1294 (2013).
    • 58. Atkins MB, Plimack ER, Puzanov I et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion Phase Ib trial. Lancet Oncol. 19(3), 405–415 (2018). • Phase Ib trial of the pembrolizumab plus axitinib combination.
    • 59. McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2(5), 662–673 (2013).
    • 60. Ahamadi M, Freshwater T, Prohn M et al. Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst. Pharmacol. 6(1), 49–57 (2017).
    • 61. Freshwater T, Kondic A, Ahamadi M et al. Evaluation of dosing strategy for pembrolizumab for oncology indications. J. Immunother. Cancer 5, 43 (2017).
    • 62. Wang DD, Zhang S, Zhao H et al. Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J. Clin. Pharmacol. 49(9), 1012–1024 (2009).
    • 63. Zientek MA, Goosen TC, Tseng E et al. In vitro kinetic characterization of axitinib metabolism. Drug Metab. Dispos. 44(1), 102–114 (2016).
    • 64. Hu-Lowe DD, Zou HY, Grazzini ML et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin. Cancer Res. 14(22), 7272–7283 (2008).
    • 65. Inai T, Mancuso M, Hashizume H et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165(1), 35–52 (2004).
    • 66. Rugo HS, Herbst RS, Liu G et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J. Clin. Oncol. 23(24), 5474–5483 (2005).
    • 67. Pithavala YK, Chen Y, Toh M et al. Evaluation of the effect of food on the pharmacokinetics of axitinib in healthy volunteers. Cancer Chemother. Pharmacol. 70(1), 103–112 (2012).
    • 68. Tortorici MA, Toh M, Rahavendran SV et al. Influence of mild and moderate hepatic impairment on axitinib pharmacokinetics. Invest. New Drugs 29(6), 1370–1380 (2011).
    • 69. Chen Y, Rini BI, Motzer RJ et al. Effect of renal impairment on the pharmacokinetics and safety of axitinib. Target. Oncol. 11(2), 229–234 (2016).
    • 70. Kopecky J, Ticha A, Janeckova H, Melichar B. Hemodiafiltration and plasma levels of axitinib in a patient with metastatic renal clear cell carcinoma. Biomed. Pap. Olomouc 162(4), 335–339 (2018).
    • 71. Rini BI, Schiller JH, Fruehauf JP et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin. Cancer Res. 17(11), 3841–3849 (2011).
    • 72. Rini BI, Melichar B, Ueda T et al. Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind Phase 2 trial. Lancet Oncol. 14, 1233–1242 (2013).
    • 73. Rini BI, Melichar B, Fishman MN et al. Axitinib dose titration: analyses of exposure, blood pressure and clinical response from a randomized Phase II study in metastatic renal cell carcinoma. Ann. Oncol. 26(7), 1372–1377 (2015).
    • 74. Rixe O, Bukowski RM, Michaelson MD et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a Phase II study. Lancet Oncol. 8(11), 975–984 (2007).
    • 75. Rini BI, Tomita Y, Melichar B et al. Overall survival analysis from a randomized Phase II study of axitinib with or without dose titration in first-line metastatic renal cell carcinoma. Clin. Genitourin. Cancer 14(6), 499–503 (2016).
    • 76. Tykodi SS, Donskov F, Lee JL et al. First-line pembrolizumab (pembro) monotherapy in advanced clear cell renal cell carcinoma (ccRCC): updated results for KEYNOTE-427 cohort A. J. Clin. Oncol. 37(15), v381–v382 (2019).
    • 77. Lee JL, Ziobro M, Gafanov R et al. KEYNOTE-427 cohort B: first-line pembrolizumab (pembro) monotherapy for advanced non-clear cell renal cell carcinoma (NCC-RCC). J. Clin. Oncol. 37(15), 4569 (2019).
    • 78. Tzogani K, Skibeli V, Westgaard I et al. The European Medicines Agency approval of axitinib (Inlyta) for the treatment of advanced renal cell carcinoma after failure of prior treatment with sunitinib or a cytokine: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Oncologist 20(2), 196–201 (2015).
    • 79. DeVito T, Saleh N. FDA approves two new indications and dosage form for pembrolizumab. Oncology (Williston Park) 33(5), 186 (2019).
    • 80. Hamid O, Robert C, Daud A et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369(2), 134–144 (2013).
    • 81. Melichar B. Laboratory medicine and medical oncology: the tale of two Cinderellas. Clin. Chem. Lab. Med. 51, 99–112 (2013).
    • 82. Iacovelli R, Nole F, Verri E et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target. Oncol. 11(2), 143–148 (2016).
    • 83. Choueiri TK, Figueroa DJ, Fay AP et al. Correlation of PD-L1 tumor expression and treatment outcomes in patients with renal cell carcinoma receiving sunitinib or pazopanib: results from COMPARZ, a randomized controlled trial. Clin. Cancer Res. 21(5), 1071–1077 (2015).
    • 84. Pradere JP, Dapito DH, Schwabe RF. The yin and yang of Toll-like receptors in cancer. Oncogene 33(27), 3485–3495 (2014).
    • 85. Melichar B, Gregor J, Solichova D et al. Increased urinary neopterin in acute myocardial infarction. Clin. Chem. 40, 338–339 (1994).
    • 86. Solichova D, Melichar B, Blaha V et al. Biochemical profile and survival in nonagenarians. Clin. Biochem. 34, 563–569 (2001).
    • 87. Melichar B, Solichova D, Melicharova K et al. Urinary neopterin in patients with advanced colorectal carcinoma. Int. J. Biol. Markers 21, 190–198 (2006).
    • 88. Melichar B, Solichová D, Freedman RS. Neopterin as an indicator of immune activation and prognosis in patients with gynecological malignancies. Int. J. Gynecol. Cancer 16, 240–252 (2006).
    • 89. Melichar B, Solichova D, Svobodova I, Melicharova K. Neopterin in renal cell carcinoma: inhalational administration of interleukin-2 is not accompanied by a rise of urinary neopterin. Luminescence 20, 311–314 (2005).
    • 90. Krcmova LK, Cervinkova B, Solichova D et al. Fast and sensitive HPLC method for the determination of neopterin, kynurenine and tryptophan in amniotic fluid, malignant effusions and wound exudates. Bioanalysis 7(21), 2751–2762 (2015).
    • 91. Friberg M, Jennings R, Alsarraj M et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101(2), 151–155 (2002).
    • 92. Li HX, Bullock K, Gurjao C et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nature Comm. 10, 4346 (2019).