We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research ArticleOpen Accesscc iconby iconnc iconnd icon

The relationship between leukemia and TP53 gene codon Arg72Pro polymorphism: analysis in a multi-ethnic population

    Emmanuel Kwateng Drokow

    Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, 450003 Zhengzhou, PR China

    ,
    Yuqing Chen

    Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, 450003 Zhengzhou, PR China

    ,
    Hafiz Abdul Waqas Ahmed

    Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, 450003 Zhengzhou, PR China

    ,
    Timothy Bonney Oppong

    Department of Epidemiology & Biostatistics, College of Public Health, Zhengzhou University, 450001 Zhengzhou, Henan, PR China

    ,
    Gloria Selorm Akpabla

    Department of Internal Medicine, Tianjin Medical University, 300070 Tianjin, PR China

    ,
    Yanru Pei

    Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, 450003 Zhengzhou, PR China

    ,
    Maame Awoyoe Kumah

    Department of Internal Medicine, University of Ghana Medical School, KB 77 Korle Bu, Accra, Ghana

    ,
    Enyonam Adjoa Neku

    Department of Pharmacy, Zhengzhou University, 450001 Zhengzhou, Henan, PR China

    &
    Kai Sun

    *Author for correspondence: Tel.: +86 182 3711 0038;

    E-mail Address: sunkai@cellscience.org

    Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, 450003 Zhengzhou, PR China

    Published Online:https://doi.org/10.2217/fon-2019-0792

    Aim: Many studies have analyzed the relationship between Arg72Pro polymorphism of TP53 and leukemia; nevertheless, the findings continue to be indeterminate. We, therefore, performed an updated meta-analysis in multi-ethnic groups using specialized software for genome-wide association studies meta-analysis. Materials & methods: PubMed, EMBASE and Google Scholar were searched up to October 2018. An odds ratio (OR) with the corresponding 95% CI was used to evaluate the strength in the association. Results: This meta-analysis included 16 studies with 2337 cases and 9494 controls. In the overall population, significant relationship between Arg72Pro polymorphism of TP53 and leukemia susceptibility was found in two genetic models (recessive model: OR = 1.276, 95% CI = 1.102–1.476; p = 0.01; overdominant model: OR = 0.891, 95% CI = 0.802–0.988; p = 0.03). In stratified studies with ethnicity, a significant association was found in five ethnic groups, including Chinese, Americans, Africans, Japanese and Indians. Conclusion: We demonstrated that an association exist between leukemia risk and TP53 gene codon Arg72Pro polymorphism in the recessive and overdominant genetic models. Also, our findings show that the TP53 Arg72Pro polymorphism may influence leukemia development in different populations.

    Papers of special note have been highlighted as: • of interest;

    Reference

    • 1. Estey EH. Prognostic factors in acute myelogenous leukemia. Leukemia 15(4), 670–672 (2001).
    • 2. Satoh Y, Matsumura I, Tanaka H et al. C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia 26 (2), 303–311 (2012). • Provides an overview required for multi-step leukemogenesis and the genomic instability caused by impaired Gadd45a function.
    • 3. Drokow EK, Sun K, Ahmed HA, Akpabla GS, Song J, Shi M. Circulating microRNA as diagnostic biomarkers for haematological cancers: a systematic review and meta-analysis. Cancer Manag. Res. 11, 4313 (2019).
    • 4. Li SY, Ye JY, Liang EY, Zhou LX, Yang M. Association between MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: a meta-analysis based on 51 case-control studies. Med. Sci. Monit. 21, 740 (2015).
    • 5. Chen J, Liu Y, Cai QQ et al. Type D personality parents of children with leukemia tend to experience anxiety: the mediating effects of social support and coping style. Medicine 94.10 (2015).
    • 6. Kowalczyk J, Nurzynska-Flak J, Armata J et al. Incidence and clinical characteristics of second malignant neoplasms in children: a multicenter study of a polish pediatric leukemia/lymphoma group. Med Sci. Monit. 10(3), CR117–CR122 (2004).
    • 7. Vardiman JW, Thiele J, Arber DA et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5), 937–951 (2009).
    • 8. Ma Z, Morris SW, Valentine V et al. Fusion of two novel genes, RBM15 and MKL1, in the t (1; 22) (p13; q13) of acute megakaryoblastic leukemia. Nat. Genet. 28(3), 220–221 (2001).
    • 9. Weng Y, Lu L, Yuan G et al. p53 codon 72 polymorphism and hematological cancer risk: an update meta-analysis. PLoS ONE 7(9), e45820 (2012).
    • 10. Descatha A, Jenabian A, Conso F, Ameille J. Occupational exposures and haematological malignancies: overview on human recent data. Cancer Causes Control 16(8), 939–953 (2005).
    • 11. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9(10), 701–713 (2009).
    • 12. Hainaut P, Wiman KG. 30 years and a long way into p53 research. Lancet Oncol. 10 (9), 913–919 (2009). • Discusses the progress and understanding of p53 from obscure oncogene to key tumor-suppressor gene with clinical potential.
    • 13. Francisco G, Menezes PR, Eluf-Neto J, Chammas R. Arg72Pro TP53 polymorphism and cancer susceptibility: a comprehensive meta-analysis of 302 case–control studies. Int. J. Cancer 129(4), 920–930 (2011).
    • 14. Srivastava S, Zou Z, Pirollo K, Blattner W, Chang EH. Germline transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348 (6303), 747–749.
    • 15. Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: challenges and opportunities. Genes Chromosomes Cancer 58 (12), 875–888 (2019). • This review suggested the use of pharmacological activators of TP53 and it clinical benefit in acute myeloid leukaemia.
    • 16. Malkin D, Nichols KE, Zelley K, Schiffman JD. Predisposition to pediatric and hematologic cancers: a moving target. Am. Soc. Clin. Oncol. Educ. B 34(1), e44–e55 (2014).
    • 17. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia the cancer genome atlas research network. N. Engl. J. Med. 368(22), 2059–2074 (2013).
    • 18. Papaemmanuil E, Gerstung M, Bullinger L et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374(23), 2209–2221 (2016).
    • 19. Quintás-Cardama A, Hu C, Qutub A et al. P53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia 31(6), 1296–1305 (2017).
    • 20. Welch JS, Petti AA, Miller CA et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N. Engl. J. Med. 375(21), 2023–2036 (2016).
    • 21. Pant V, Quintás-Cardama A, Lozano G. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood 120(26), 5118–5127 (2012).
    • 22. Stoddart A, Fernald AA, Wang J et al. Haploinsufficiency of del (5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood 123(7), 1069–1078 (2014).
    • 23. McGraw KL, Zhang LM, Rollison DE et al. The relationship of TP53 R72P polymorphism to disease outcome and TP53 mutation in myelodysplastic syndromes. Blood Cancer J. 5(3), e291–e291 (2015).
    • 24. McGraw KL, Cluzeau T, Sallman DA et al. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del (5q) myelodysplastic syndromes. Oncotarget 6(33), 34437 (2015). • A useful research article discussing the role of TP53 in preleukemia conditions.
    • 25. Pim D, Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int. J. Cancer 108(2), 196–199 (2004).
    • 26. Ara S, Lee PS, Hansen MF, Saya H. Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 18(16), 4961 (1990).
    • 27. Bergamaschi G, Merante S, Orlandi E, Galli A, Bernasconi P, Cazzola M. TP53 codon 72 polymorphism in patients with chronic myeloid leukemia. Haematologica 89(7), 868–869 (2004).
    • 28. Ruan XL, Li S, Zeng XT, Xia LH, Hu Y. No association between cytochrome P450 2D6 gene polymorphism and risk of acute leukemia: evidence based on a meta- analysis. Chin. Med. J. (Engl.) 126(), 3750–3753 (2013).
    • 29. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta- analysis detected by a simple, graphical test. BMJ 315(7109), 629–634 (1997).
    • 30. Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics 18(1), 563 (2017).
    • 31. Schulz E, Lind K, Renner W et al. The TP53 Pro72Arg SNP in de novo acute myeloid leukemia – results of two cohort studies involving 215 patients and 3759 controls. Br. J. Haematol. 181(1), 148 (2018).
    • 32. El-Danasouri NM, Ragab SH, Rasheed MA, El_Saadany ZA, Abd El-Fattah SN. MDM2 SNP309 and p53 codon 72 genetic polymorphisms and risk of AML: an Egyptian study. Ann. Clin. Lab. Sci. 44(4), 449–454 (2014).
    • 33. de Lourdes Perim A, Guembarovski RL, Oda JM et al. CXCL12 and TP53 genetic polymorphisms as markers of susceptibility in a Brazilian children population with acute lymphoblastic leukemia (ALL). Mol. Biol. Rep. 40 (7), 4591–4596 (2013).
    • 34. Chen J, Zhu B, Chen J, Li Y. Genetic variations in MDM2 and P53 genes confer risk for adult acute lymphoblastic leukemia in a Chinese population. DNA Cell Biol. 32 (7), 414–419 (2013).
    • 35. Chauhan PS, Ihsan R, Mishra AK et al. High order interactions of xenobiotic metabolising genes and P53 codon 72 polymorphisms in acute leukemia. Environ. Mol. Mutagen. 53(8), 619–630 (2012).
    • 36. Shi JY, Ren ZH, Jiao B et al. Genetic variations of DNA repair genes and their prognostic significance in patients with acute myeloid leukemia. Int. J. Cancer 128(1), 233–238 (2011).
    • 37. Do TN, Ucisik-Akkaya E, Davis CF, Morrison BA, Dorak MT. TP53 R72P and MDM2 SNP309 polymorphisms in modification of childhood acute lymphoblastic leukemia susceptibility. Cancer Genet. Cytogenet. 195(1), 31–36 (2009).
    • 38. Xiong X, Wang M, Wang L et al. Risk of MDM2 SNP309 alone or in combination with the p53 codon 72 polymorphism in acute myeloid leukemia. Leuk. Res. 33(11), 1454–1458 (2009).
    • 39. Phang BH, Linn YC, Li H, Sabapathy K. MDM2 SNP309 G allele decreases risk but does not affect onset age or survival of Chinese leukemia patients. Eur. J. Cancer 44(5), 760–766 (2008).
    • 40. Ellis NA, Hou D, Yildiz O et al. MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility. Blood 112(3), 741–749 (2008).
    • 41. Kochethu G, Delgado J, Pepper C et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukemia. Leuk. Res. 30(9), 1113–1118 (2006).
    • 42. Takeuchi S, Matsushita M, Tsukasaki K et al. P53 codon 72 polymorphism is associated with disease progression in adult T-cell leukemia/lymphoma. Br. J. Haematol. 131(4), 552–553 (2005).
    • 43. Nakano Y, Naoe T, Kiyoi H et al. Poor clinical significance of p53 gene polymorphism in acute myeloid leukemia. Leuk. Res. 24(4), 349–352 (2000).
    • 44. Legrand F, Renneville A, Macintyre E et al. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new Insights based on a survey of 44 cases. Medicine 92(5), 273–284 (2013).
    • 45. Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366), 215–221 (1992).
    • 46. Ruan XL, Li S, Meng XY, Geng P, Gao QP, Ao XB. The role of TP53 gene codon 72 polymorphism in leukemia: a PRISMA-compliant systematic review and meta-analysis. Medicine 94(38), e1588 (2015).
    • 47. Tian X, Dai S, Sun J, Jiang Y. Association between TP53 Arg72Pro polymorphism and leukemia risk: a meta-analysis of 14 case-control studies. Sci. Rep. 6(1), 24097 (2016).
    • 48. Wang F, Wang P, Wang B et al. Association between TP53 Arg72Pro polymorphism and thyroid carcinoma risk. Tumor Biol. 35(3), 2723–2728 (2014).
    • 49. Tian X, Dai S, Sun J, Jiang S, Jiang Y. The association between the TP53 Arg72Pro polymorphism and colorectal cancer: an updated meta-analysis based on 32 studies. Oncotarget. 8(1), 1156–1165 (2017).
    • 50. Zorić A, Horvat A, Balija M, Slade N. The Arg72Pro polymorphism of TP53 in Croatian population. Croat. Chem. Acta 85 (2), 239–243 (2012).
    • 51. Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33(3), 357–365 (2003).
    • 52. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell. Biol. 19(2), 1092–1100 (1992).
    • 53. Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING- finger domain is required for nuclear exclusion of p53. Nat. Cell Biol. 2(9), 563–568 (2000).
    • 54. Preudhomme C, Fenaux P. The clinical significance of mutations of the P53 tumour suppressor gene in haematological malignancies. Br. J. Haematol. 98(3), 502–511 (1997).
    • 55. Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21(21), 3475–3495 (2002).