We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

lncRNA and mRNA signature for prognosis prediction of glioblastoma

    Guohong Liu

    Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China

    Equal contribution and co-first authors

    Search for more papers by this author

    ,
    Yunbao Pan

    Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China

    Equal contribution and co-first authors

    Search for more papers by this author

    ,
    Yueying Li

    Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China

    &
    Haibo Xu

    *Author for correspondence:

    E-mail Address: xuhaibo1120@hotmail.com

    Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, PR China

    Published Online:https://doi.org/10.2217/fon-2019-0538

    Aims: We aimed to find out potential novel biomarkers for prognosis of glioblastoma (GBM). Materials & methods: We downloaded mRNA and lncRNA expression profiles of 169 GBM and five normal samples from The Cancer Genome Atlas and 129 normal brain samples from genotype-tissue expression. We use R language to perform the following analyses: differential RNA expression analysis of GBM samples using ‘edgeR’ package, survival analysis taking count of single or multiple gene expression level using ‘survival’ package, univariate and multivariate Cox regression analysis using Cox function plugged in ‘survival’ package. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analysis were performed using FunRich tool online. Results and conclusion: We obtained differentially DEmRNAs and DElncRNAs in GBM samples. Most prognostically relevant mRNAs and lncRNAs were filtered out. ‘GPCR ligand binding’ and ‘Class A/1’ are found to be of great significance. In short, our study provides novel biomarkers for prognosis of GBM.

    References

    • 1. Delgado-López PD, Corrales-García EM. Survival in glioblastoma: a review on the impact of treatment modalities. Clin. Transl. Oncol. 18(11), 1062–1071 (2016).
    • 2. Desouza RM, Shaweis H, Han C et al. Has the survival of patients with glioblastoma changed over the years? Br. J. Cancer 114(2), 146–150 (2016).
    • 3. Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J. Clin. Neurosci. 54, 7–13 (2018).
    • 4. Wolbers JG. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies. Chin. J.Cancer 33(1), 8–15 (2014).
    • 5. Yahara K, Ohguri T, Udono H et al. Radiotherapy using IMRT boosts after hyperbaric oxygen therapy with chemotherapy for glioblastoma. J. Radiat. Res. 58(3), 351–356 (2017).
    • 6. Keskin DB, Anandappa AJ, Sun J et al. Neoantigen vaccine generates intratumoral T cell responses in Phase Ib glioblastoma trial. Nature 565(7738), 234–239 (2019).
    • 7. Cloughesy TF, Mochizuki AY, Orpilla JR et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25(3), 477–486 (2019).
    • 8. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14(11), 699–712 (2013).
    • 9. Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol. 18(9), 962–972 (2017).
    • 10. Wang Y, He L, Du Y et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16(4), 413–425 (2015).
    • 11. Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 65(6), 1140–1151 (2014).
    • 12. Lin C, Yang L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 28(4), 287–301 (2018).
    • 13. Zhang JX, Han L, Bao ZS et al. HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro. Oncol. 15(12), 1595–1603 (2013).
    • 14. Tan SK, Pastori C, Penas C et al. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol. Cancer 17(1), 74 (2018).
    • 15. Zhang L, Wang Q, Wang F et al. LncRNA LINC01446 promotes glioblastoma progression by modulating miR-489-3p/TPT1 axis. Biochem. Biophys. Res. Commun. 503(3), 1484–1490 (2018).
    • 16. Ren J, Yang Y, Xue J et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem. Biophys. Res. Commun. 496(2), 712–718 (2018).
    • 17. Ren S, Xu Y. AC016405.3, a novel lncRNA, acts as a tumor suppressor via modulating of TET2 by miR-19a-5p sponging in glioblastoma. Cancer scienc. 110(5), 1621–1632 (2019).
    • 18. Xu P, Yang J, Liu J et al. Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis. BMC Med. Genomics 11(1), 96–96 (2018).
    • 19. Peng Y, Jia J, Jiang Z, Huang D, Jiang Y, Li Y. Oncogenic DIRAS3 promotes malignant phenotypes of glioma by activating EGFR-AKT signaling. Biochem. Biophys. Res. Commun. 505(2), 413–418 (2018).
    • 20. Guan Y, He Y, Lv S, Hou X, Li L, Song J. Overexpression of HOXC10 promotes glioblastoma cell progression to a poor prognosis via the PI3K/AKT signalling pathway. J. Drug Target. 27(1), 60–66 (2019).
    • 21. Qi F, Liu X, Wu H et al. Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J. Hematol. Oncol. 10(1), 48 (2017).
    • 22. Fan KJ, Liu Y, Yang B, Tian XD, Li CR, Wang B. Prognostic and diagnostic significance of long non-coding RNA AGAP2-AS1 levels in patients with non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 21(10), 2392–2396 (2017).
    • 23. Tian Y, Zheng Y, Dong X. AGAP2-AS1 serves as an oncogenic lncRNA and prognostic biomarker in glioblastoma multiforme. J. Cell. Biochem. 120(6), 9056–9062 (2019).
    • 24. Dong N, Guo J, Han S, Bao L, Diao Y, Lin Z. Positive feedback loop of lncRNA HOXC-AS2/miR-876-5p/ZEB1 to regulate EMT in glioma. Oncol. Targets Ther. 12, 7601–7609 (2019).
    • 25. Nohata N, Goto Y, Gutkind JS. Onco-GPCR signaling and dysregulated expression of microRNAs in human cancer. J. Hum. Genet. 62(1), 87–96 (2017).
    • 26. Insel PA, Sriram K, Wiley SZ et al. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front. Pharmacol. 9, 431 (2018).
    • 27. Nogués L, Palacios-García J, Reglero C et al. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin. Cancer Biol. 48, 78–90 (2018).
    • 28. Tokunaga R, Zhang W, Naseem M et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer therapy. Cancer Treat. Rev. 63, 40–47 (2018).
    • 29. Dolma S, Selvadurai HJ, Lan X et al. Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 29(6), 859–873 (2016).
    • 30. Yu M, Cui R, Huang Y, Luo Y, Qin S, Zhong M. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway. EBioMedicine 48, 264–276 (2019).
    • 31. Jing Z, Xu H, Chen X et al. The proton-sensing G-protein coupled receptor GPR4 promotes angiogenesis in head and neck cancer. PLoS ONE 11(4), e0152789 (2016).
    • 32. Castellone RD, Leffler NR, Dong L, Yang LV. Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. Cancer Lett. 312(2), 197–208 (2011).