We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

DHRS12 inhibits the proliferation and metastasis of osteosarcoma via Wnt3a/β-catenin pathway

    Zhixian Xu

    Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China

    ,
    Wubing He

    Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China

    ,
    Tie Ke

    Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China

    ,
    Yongfa Zhang

    Department of Emergency Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China

    &
    Guifeng Zhang

    *Author for correspondence:

    E-mail Address: fuousidayi06@163.com

    Department of Medical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian 350001, PR China

    Published Online:https://doi.org/10.2217/fon-2019-0432

    Aim: This experimental design was based on DHRS12 to explore its biological effects on osteosarcoma (OS). Materials & methods: The expression level of endogenous DHRS12 was analyzed by immunohistochemical analysis. DHRS12 was overexpressed in MG-63 and HOS cells by plasmid transfection. Cell proliferation, invasion, migration, apoptosis and western blot were used in the experiment. Results: The expression of DHRS12 was significantly reduced in OS. Overexpression of DHRS12 inhibited the proliferation, migration and invasion of MG-63 and HOS cells and induced apoptosis of OS cells. Overexpression of DHRS12 upregulated Bax, Caspase 9 and Caspase 3. Overexpression of DHRS12 resulted in inactivation of the Wnt3a/β-catenin signaling pathway. Conclusion: Overexpression of DHRS12 inhibited the progression of OS via the Wnt3a/β-catenin pathway.

    Reference

    • 1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 115(7), 1531–1543 (2010).
    • 2. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat.Res. 152, 3–13 (2009).
    • 3. Lewis IJ, Nooij MA, Whelan J et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized Phase III trial of the European osteosarcoma intergroup. J. Natl Cancer Inst. 99(2), 112–128 (2007).
    • 4. Faisham WI, Mat Saad AZ, Alsaigh LN et al. Prognostic factors and survival rate of osteosarcoma: a single-institution study. Asia Pac. J. Clin. Oncol. 13(2), e104–e110 (2017).
    • 5. Min SK, Lee S-Y, Cho WH et al. Tumor necrosis rate adjusted by tumor volume change is a better predictor of survival of localized osteosarcoma patients. Ann. Surg. Oncol. 15(3), 906–914 (2008).
    • 6. Bielack SS, Wulff B, Delling G et al. Osteosarcoma of the trunk treated by multimodal therapy: experience of the cooperative osteosarcoma study group (COSS). Pediatric Blood Cancer 24(1), 6–12 (2010).
    • 7. Chou AJ, Geller DS, Gorlick R. Therapy for osteosarcoma: where do we go from here? Paediatr. Drugs 10(5), 315–327 (2008).
    • 8. Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 26(1), 1–18 (2007).
    • 9. Chandar N, Billig B, McMaster J, Novak J. Inactivation of p53 gene in human and murine osteosarcoma cells. Br. J. Cancer 65(2), 208–214 (1992).
    • 10. Aguilar S, Nye E, Chan J et al. Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25(6), 1586–1594 (2010).
    • 11. Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr. Opin. Oncol. 25(4), 398–406 (2013).
    • 12. Zhou W, Hao M, Du X, Chen K, Wang G, Yang J. Advances in targeted therapy for osteosarcoma. Discov. Med. 17(96), 301–307 (2014).
    • 13. Geller DS, Morris J, Revskaya E et al. Targeted therapy of osteosarcoma with radiolabeled monoclonal antibody to an insulin-like growth factor-2 receptor (IGF2R). Nucl. Med. Biol. 43(12), 812–817 (2016).
    • 14. Ballatori SE, Hinds PW. Osteosarcoma: prognosis plateau warrants retinoblastoma pathway targeted therapy. Signal Transduct. Target. Ther. 1, 16001 (2016).
    • 15. Bartuma H, Nord KH, Macchia G et al. Gene expression and single nucleotide polymorphism array analyses of spindle cell lipomas and conventional lipomas with 13q14 deletion. Genes Chromosomes & Cancer 50(8), 619–632 (2011).
    • 16. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 149(6), 1192–1205 (2012).
    • 17. Revill K, Wang T, Lachenmayer A et al. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology 145(6), 1424–1435.e1–25 (2013).
    • 18. Marina N. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 9(4), 422441 (2004).
    • 19. Qi XT, Li YL, Zhang YQ et al. KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacol. Sin. 40(4), 546–555 (2018).
    • 20. Yang Y, Han L, He Z et al. Advances in limb salvage treatment of osteosarcoma. J. Bone Oncol. 10, 36–40 (2018).
    • 21. Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev. Anticancer Ther. 6(7), 1075–1085 (2006).
    • 22. Bacci G, Picci P, Ferrari S et al. Primary chemotherapy and delayed surgery for nonmetastatic osteosarcoma of the extremities. Results in 164 patients preoperatively treated with high doses of methotrexate followed by cisplatin and doxorubicin. Cancer 72(11), 3227–3238 (2015).
    • 23. Saumet L, Deschamps F, Marec-Berard P et al. Radiofrequency ablation of metastases from osteosarcoma in patients under 25 years: the SCFE experience. Pediatr. Hematol. Oncol. 32(1), 41–49 (2015).
    • 24. Zhang HJ, Yang JJ, Lu JP et al. Use of intra-arterial chemotherapy and embolization before limb salvage surgery for osteosarcoma of the lower extremity. Cardiovasc. Intervent. Radiol. 32(4), 672–678 (2009).
    • 25. Zhang P, Yang Y, Zweidler-McKay P, Hughes DP. Retraction: critical role of notch signaling in osteosarcoma invasion and metastasis. Clin. Cancer Res. 19(18), 5256–5257 (2013).
    • 26. Wang S, Zhang D, Han S et al. Fibulin-3 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition and activating the Wnt/β-catenin signaling pathway. Sci. Rep. 7(1), 6215 (2017).
    • 27. Huang Q, Gumireddy K, Schrier M et al. The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nat. Cell Biol. 10(2), 202–210 (2008).
    • 28. Song B, Wang Y, Xi Y et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28(46), 4065–4074 (2009).
    • 29. Li W, Xie P, Ruan WH. Overexpression of lncRNA UCA1 promotes osteosarcoma progression and correlates with poor prognosis. J. Bone Oncol. 5(2), 80–85 (2016).
    • 30. Song MA, Brasky TM, Weng DY, McElroy JP, Shields PG. Landscape of genome-wide age-related DNA methylation in breast tissue. Oncotarget 8(70), 114648–114662 (2017).
    • 31. Jecmenica R, Grgic D, Matijevic M, Petrovic B. Nuclear and thermal hydraulic calculation of a representative I2S-LWR first core. Presented at: International Conference of the Croatian Nuclear Society. Zagreb: Croatian Nuclear Society, str. 072-1 (2016).
    • 32. Rhim AD, Mirek ET, Aiello NM et al. EMT and dissemination precede pancreatic tumor formation. Cell 148(1–2), 349–361 (2012).
    • 33. Sánchez-Tilló E, Lázaro A, Torrent R et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29(24), 3490–3500 (2010).
    • 34. Arenas MI, Romo E, Royuela M, Fraile B, Paniagua R. E-, N- and P-cadherin, and α-, β- and γ-catenin protein expression in normal, hyperplastic and carcinomatous human prostate. Histochem. J. 32(11), 659–667 (2000).
    • 35. Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumor-suppressor gene. Trends Biochem. Sci. 24(2), 73–76 (1999).
    • 36. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68(10), 3645–3654 (2008).
    • 37. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell Biol. 147(3), 631–644 (1999).
    • 38. Katoh. Transcriptional mechanisms of WNT5A based on NF-κB, hedgehog, TGFβ, and notch signaling cascades. Int. J. Mol. Med. 23(6), 763–769 (2009).
    • 39. Zha L, Zhang J, Tang W et al. HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig. Dis. Sci. 58(3), 724–733 (2013).
    • 40. Guo YH, Wang LQ, Li B et al. Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget 7(27), 42513–42526 (2016).