We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Relationship between intestinal microorganisms and T lymphocytes in colorectal cancer

    Han Shuwen

    Department of Medical Oncology, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China

    ,
    Yang Xi

    Department of Intervention & Radiotherapy, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China

    ,
    Qi Quan

    Department of Medical Oncology, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China

    ,
    Pan Yuefen

    Department of Medical Oncology, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China

    ,
    Da Miao

    Department of Critical Care Medicine, Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, Zhejiang Province 313000, PR China

    &
    Zhou Qing

    *Author for correspondence:

    E-mail Address: zhouqing20182018@163.com

    Department of Critical Care Medicine, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China

    Published Online:https://doi.org/10.2217/fon-2018-0595

    Colorectal cancer (CRC) is a common type of malignant cancer worldwide. Recent studies have identified the gut microbiota as the origin of CRC, and T lymphocyte-mediated immune functions have been shown to play an important role in this disease. By summarizing previous literature, we found that Fusobacterium nucleatum may protect CRC from immune cell attack by inhibiting T cells and influencing the production of many chemokines and cytokines. Some bacterial metabolites and probiotics have been shown to participate in the regulation of CRC through T cell-mediated molecular pathways. To visualize the relevant data, an association network of intestinal microorganisms and T lymphocytes associated with CRC was constructed. This work may provide direction for – and insight into – further research on the relationship between intestinal microorganisms and T lymphocytes in CRC.

    References

    • 1. Mitchell AB, Glanville AR. The human respiratory microbiome: implications and impact. Semin. Respir. Crit. Care Med. 39(2), 199–212 (2018).
    • 2. Han S, Gao J, Zhou Q et al. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag. Res. 10, 199–206 (2018).
    • 3. Ohtani N. Microbiome and cancer. Semin. Immunopathol. 37(1), 65–72 (2015).
    • 4. Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 16(10), 406 (2014).
    • 5. Chen GY. The role of the gut microbiome in colorectal cancer. Clin. Colon Rectal Surg. 31(3), 192–198 (2018).
    • 6. Gagniere J, Bonnin V, Jarrousse AS et al. Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin. Sci. 131(6), 471–485 (2017).
    • 7. Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts collide: genomic, immune, and microbial influences on the tumor microenvironment and response to cancer therapy. Front. Immunol. 9, 946 (2018).
    • 8. Sun J. Enteric bacteria and cancer stem cells. Cancers 3(1), 285–297 (2010).
    • 9. Wassenaar TM. E coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 44(5), 619–632 (2018).
    • 10. Niederreiter L, Adolph TE, Tilg H. Food, microbiome and colorectal cancer. Dig. Liver Dis. 50(7), 647–652 (2018).
    • 11. Xie YH, Gao QY, Cai GX et al. Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies. EBioMedicine 25, 32–40 (2017).
    • 12. Viljoen KS, Dakshinamurthy A, Goldberg P et al. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE 10(3), e119462 (2015).
    • 13. Han A, Bennett N, Ahmed B et al. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases. Oncotarget 9(43), 27280–27292 (2018).
    • 14. Ohara T, Suzutani T. Intake of Bifidobacterium longum and fructo-oligosaccharides prevents colorectal carcinogenesis. Euroasian J. Hepatogastroenterol. 8(1), 11–17 (2018).
    • 15. Casanova MR, Azevedo-Silva J, Rodrigues LR, Preto A. Colorectal cancer cells increase the production of short chain fatty acids by Propionibacterium freudenreichii impacting on cancer cells survival. Front. Nutr. 5, 44 (2018).
    • 16. Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus association with colorectal cancer. Front. Microbiol. 9, 614 (2018).
    • 17. Lewis SB, Prior A, Ellis SJ et al. Flagellin induces beta-Defensin 2 in human colonic ex vivo infection with enterohemorrhagic Escherichia coli. . Front. Cell. Infect. Microbiol. 6, 68 (2016).
    • 18. Tian PJ, Li BL, Shan YJ et al. Extraction of Peptidoglycan from L. paracasei subp. paracasei X12 and its preliminary mechanisms of inducing immunogenic cell death in HT-29 Cells. Int. J. Mol. Sci. 16(8), 20033–20049 (2015).
    • 19. Li TT, Ogino S, Qian ZR. Toll-like receptor signaling in colorectal cancer: carcinogenesis to cancer therapy. World J. Gastroenterol. 20(47), 17699–17708 (2014).
    • 20. Elinav E, Henao-Mejia J, Flavell RA. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6(1), 4–13 (2013).
    • 21. Arthur JC, Jobin C. The struggle within: microbial influences on colorectal cancer. Inflamm. Bowel Dis. 17(1), 396–409 (2011).
    • 22. Messaritakis I, Stogiannitsi M, Koulouridi A et al. Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS ONE 13(6), e197327 (2018).
    • 23. Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97(6), 669–697 (2017).
    • 24. Teramoto K, Ohshio Y, Fujita T, Hanaoka J, Kontani K. Simultaneous activation of T helper function can augment the potency of dendritic cell-based cancer immunotherapy. J. Cancer Res. Clin. Oncol. 139(5), 861–870 (2013).
    • 25. Mucida D, Husain MM, Muroi S et al. Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14(3), 281–289 (2013).
    • 26. Marisa L, Svrcek M, Collura A et al. The balance between cytotoxic T-cell lymphocytes and immune checkpoint expression in the prognosis of colon tumors. J. Natl Cancer Inst. 110(1), doi:10.1093/jnci/djx 136 (2018).
    • 27. Church SE, Galon J. Regulation of CTL infiltration within the tumor microenvironment. Adv. Exp. Med. Biol. 1036, 33–49 (2017).
    • 28. Olguin JE, Medina-Andrade I, Molina E et al. Early and partial reduction in CD4(+)Foxp3(+) regulatory T cells during colitis-associated colon cancer induces CD4(+) and CD8(+) T cell activation inhibiting tumorigenesis. J. Cancer 9(2), 239–249 (2018).
    • 29. Sideras K, Galjart B, Vasaturo A et al. Prognostic value of intra-tumoral CD8(+) /FoxP3(+) lymphocyte ratio in patients with resected colorectal cancer liver metastasis. J. Surg. Oncol. 118(1), 68–76 (2018).
    • 30. Zhu XW, Zhu HZ, Zhu YQ et al. Foxp3 expression in CD4(+)CD25(+)Foxp3(+) regulatory T cells promotes development of colorectal cancer by inhibiting tumor immunity. J. Huazhong Univ. Sci. Technolog. Med. Sci. 36(5), 677–682 (2016).
    • 31. Fujimoto H, Saito Y, Ohuchida K et al. Deregulated mucosal immune surveillance through gut-associated regulatory T cells and PD-1(+) T cells in human colorectal cancer. J. Immunol. 200(9), 3291–3303 (2018).
    • 32. Zhong W, Jiang ZY, Zhang L et al. Role of LAP(+)CD4(+) T cells in the tumor microenvironment of colorectal cancer. World J. Gastroenterol. 23(3), 455–463 (2017).
    • 33. Raghavan S, Quiding-Jarbrink M. Regulatory T cells in gastrointestinal tumors. Expert Rev. Gastroenterol. Hepatol. 5(4), 489–501 (2011).
    • 34. Hu G, Wu P, Cheng P et al. Tumor-infiltrating CD39(+)gammadeltaTregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology 6(2), e1277305 (2017).
    • 35. Seebauer CT, Brunner S, Glockzin G et al. Peritoneal carcinomatosis of colorectal cancer is characterized by structural and functional reorganization of the tumor microenvironment inducing senescence and proliferation arrest in cancer cells. Oncoimmunology 5(12), e1242543 (2016).
    • 36. Cremonesi E, Governa V, Garzon J et al. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut 67(11), 1984–1994 (2018).
    • 37. Thiele OE, Fan H, Tam AJ et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10(2), 421–433 (2017).
    • 38. Yuvaraj S, Al-Lahham S, Marreddy RK et al. Human scFv SIgA expressed on Lactococcus lactis as a vector for the treatment of mucosal disease. Mol. Nutr. Food Res. 52(8), 913–920 (2008).
    • 39. Vo MC, Lee HJ, Kim JS et al. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity. Oncotarget 6(32), 33781–33790 (2015).
    • 40. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10(2), 131–144 (2010).
    • 41. Kempski J, Brockmann L, Gagliani N, Huber S. TH17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis. Front. Immunol. 8, 1373 (2017).
    • 42. Deng Z, Mu J, Tseng M et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat. Commun. 6, 6956 (2015).
    • 43. Wick EC, Rabizadeh S, Albesiano E et al. Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm. Bowel Dis. 20(5), 821–834 (2014).
    • 44. Girardin A, McCall J, Black MA et al. Inflammatory and regulatory T cells contribute to a unique immune microenvironment in tumor tissue of colorectal cancer patients. Int. J. Cancer 132(8), 1842–1850 (2013).
    • 45. Sarrabayrouse G, Bossard C, Chauvin JM et al. CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol. 12(4), e1001833 (2014).
    • 46. Erdman SE, Poutahidis T. Roles for inflammation and regulatory T cells in colon cancer. Toxicol. Pathol. 38(1), 76–87 (2010).
    • 47. Mima K, Ogino S, Nakagawa S et al. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg. Oncol. 26(4), 368–376 (2017).
    • 48. Rezasoltani S, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E, Dabiri H, Ghanbari R, Zali MR. Gut microbiota, epigenetic modification and colorectal cancer. Iran J. Microbiol. 9(2), 55–63 (2017).
    • 49. Pang X, Tang YJ, Ren XH et al. Microbiota, epithelium, inflammation, and TGF-beta signaling: an intricate interaction in oncogenesis. Front. Microbiol. 9, 1353 (2018).
    • 50. Hu G, Li Z, Wang S. Tumor-infiltrating FoxP3(+) Tregs predict favorable outcome in colorectal cancer patients: a meta-analysis. Oncotarget 8(43), 75361–75371 (2017).
    • 51. Yan G, Liu T, Yin L, Kang Z, Wang L. Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with colorectal cancer: a meta-analysis. Cell. Mol. Biol. 64(6), 94–102 (2018).
    • 52. Limagne E, Euvrard R, Thibaudin M et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-bevacizumab drug treatment regimen. Cancer Res. 76(18), 5241–5252 (2016).
    • 53. Heyman M, Menard S. Probiotic microorganisms: how they affect intestinal pathophysiology. Cell. Mol. Life Sci. 59(7), 1151–1165 (2002).
    • 54. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr. Treat. Options Oncol. 16(7), 30 (2015).
    • 55. Mlecnik B, Bindea G, Angell HK et al. Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44(3), 698–711 (2016).
    • 56. Webber EM, Kauffman TL, O’Connor E et al. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer 15, 156 (2015).
    • 57. Patel SA, Longacre TA, Ladabaum U et al. Tumor molecular testing guides anti-PD-1 therapy and provides evidence for pathogenicity of mismatch repair variants. Oncologist 23(12), 1395–1400 (2018).
    • 58. Gagniere J, Bonnin V, Jarrousse AS et al. Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin. Sci. 131(6), 471–485 (2017).
    • 59. Miyauchi T, Yaguchi T, Kawakami Y. Inter-patient and intra-tumor heterogeneity in the sensitivity to tumor-targeted immunity in colorectal cancer. Nihon Rinsho Meneki Gakkai Kaishi 40(1), 54–59 (2017).
    • 60. Nosho K, Sukawa Y, Adachi Y et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J. Gastroenterol. 22(2), 557–566 (2016).
    • 61. Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr. Opin. Microbiol. 23, 141–147 (2015).
    • 62. Kostic AD, Chun E, Robertson L et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2), 207–215 (2013).
    • 63. Bashir A, Miskeen AY, Bhat A et al. Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. Eur. J. Cancer Prev. 24(5), 373–385 (2015).
    • 64. Rubinstein MR, Wang X, Liu W et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14(2), 195–206 (2013).
    • 65. Abed J, Emgard JE, Zamir G et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20(2), 215–225 (2016).
    • 66. Yu T, Guo F, Yu Y et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170(3), 548–563 (2017).
    • 67. Geller LT, Barzily-Rokni M, Danino T et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357(6356), 1156–1160 (2017).
    • 68. Shenker BJ, Datar S. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect. Immun. 63(12), 4830–4836 (1995).
    • 69. Kinder HS, Lindemann RA. Fusobacterium nucleatum T18 aggregates human mononuclear cells and inhibits their PHA-stimulated proliferation. J. Periodontol. 68(1), 39–44 (1997).
    • 70. Chen T, Li Q, Zhang X et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum. Pathol. 79, 93–101 (2018).
    • 71. Suschak JJ, Bagley K, Shoemaker CJ et al. The genetic adjuvants interleukin-12 and granulocyte-macrophage colony stimulating factor enhance the immunogenicity of an Ebola virus deoxyribonucleic acid vaccine in mice. J. Infect. Dis. 218(Suppl. 5), S519–S527 (2018).
    • 72. Jahn-Schmid B, Siemann U, Zenker A et al. Bet v 1, the major birch pollen allergen, conjugated to crystalline bacterial cell surface proteins, expands allergen-specific T cells of the Th1/Th0 phenotype in vitro by induction of IL-12. Int. Immunol. 9(12), 1867–1874 (1997).
    • 73. Yu S, Jia L, Zhang Y et al. IL-12 induced the generation of IL-21- and IFN-gamma-co-expressing poly-functional CD4+ T cells from human naive CD4+ T cells. Cell Cycle 14(21), 3362–3372 (2015).
    • 74. Hester CM, Jala VR, Langille MG et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J. Gastroenterol. 21(9), 2759–2769 (2015).
    • 75. Yu Z, Song G, Liu J et al. Beneficial effects of extracellular polysaccharide from Rhizopus nigricans on the intestinal immunity of colorectal cancer mice. Int. J. Biol. Macromol. 115, 718–726 (2018).
    • 76. Nowak A, Slizewska K, Otlewska A. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens. Regul. Toxicol. Pharmacol. 73(3), 938–946 (2015).
    • 77. Thirabunyanon M, Hongwittayakorn P. Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl. Biochem. Biotechnol. 169(2), 511–525 (2013).
    • 78. Jan G, Belzacq AS, Haouzi D et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ. 9(2), 179–188 (2002).
    • 79. Mu C, Yang Y, Luo Z, Guan L, Zhu W. The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet. J. Nutr. 146(3), 474–483 (2016).
    • 80. GCJ Abell, Christophersen CT, McOrist AL, Clarke JM. Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. Br. J. Nutr. 105(10), 1480–1485 (2011).
    • 81. Ogino S, Nowak JA, Hamada T et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 67(6), 1168–1180 (2018).
    • 82. Ogino S, Nowak JA, Hamada T et al. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol. 4, 83–103 (2019).
    • 83. Shah MS, DeSantis TZ, Weinmaier T et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut 67(5), 882–891 (2018).
    • 84. Yoshida Y, Naito M, Yamada T et al. Adoptive chemoimmunotherapy using activated alphabeta T cells for stage IV colorectal cancer. Anticancer Res. 36(7), 3741–3746 (2016).
    • 85. Kuczma MP, Ding ZC, Li T et al. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget 8(67), 111931–111942 (2017).
    • 86. Hamada T, Keum N, Nishihara R et al. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J. Gastroenterol. 52(3), 265–275 (2017).
    • 87. Groza D, Gehrig S, Kudela P et al. Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. Oncoimmunology 7(5), e1424676 (2018).
    • 88. Park HE, Kim JH, Cho NY et al. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 471(3), 329–336 (2017).
    • 89. Saito T, Nishikawa H, Wada H et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22(6), 679–684 (2016).
    • 90. Lenoir M, Del CS, Cortes-Perez NG et al. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J. Gastroenterol. 51(9), 862–873 (2016).
    • 91. Bhattacharya N, Yuan R, Prestwood TR et al. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8(+) T cell-mediated immunity in colorectal cancer. Immunity 45(3), 641–655 (2016).
    • 92. Stern C, Kasnitz N, Kocijancic D et al. Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int. J. Cancer 137(8), 2019–2028 (2015).
    • 93. Mima K, Sukawa Y, Nishihara R et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1(5), 653–661 (2015).
    • 94. Jiang Y, Lin J, Zhang D et al. Bacterial translocation contributes to cachexia and its possible pathway in patients with colon cancer. J. Clin. Gastroenterol. 48(2), 131–137 (2014).
    • 95. Huang T, Li S, Li G et al. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity. PLoS ONE 9(10), e110826 (2014).
    • 96. Nguyen DD, Muthupalani S, Goettel JA et al. Colitis and colon cancer in WASP-deficient mice require Helicobacter species. Inflamm. Bowel Dis. 19(10), 2041–2050 (2013).
    • 97. Zimmerman MA, Singh N, Martin PM et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302(12), G1405–G1415 (2012).
    • 98. Bassaganya-Riera J, Viladomiu M, Pedragosa M et al. Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS ONE 7(4), e34676 (2012).
    • 99. Wu S, Rhee KJ, Albesiano E et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15(9), 1016–1022 (2009).
    • 100. Erdman SE, Poutahidis T, Tomczak M et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am. J. Pathol. 162(2), 691–702 (2003).
    • 101. Kado S, Uchida K, Funabashi H et al. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res. 61(6), 2395–2398 (2001).
    • 102. Maeurer M, Zitvogel L, Elder E et al. Human intestinal V delta 1+ T cells obtained from patients with colon cancer respond exclusively to SEB but not to SEA. Nat. Immun. 14(4), 188–197 (1995).