We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Oncogene addicted non-small-cell lung cancer: current standard and hot topics

    Silvia Vecchiarelli

    Onco-Hematology Department, S Maria delle Croci Hospital, viale Randi 5, 48121, Ravenna, Italy

    &
    Chiara Bennati

    *Author for correspondence: Tel.: +39 (0)544 285206; Fax: +39 (0)544 28 5245;

    E-mail Address: chiarabennati@libero.it

    Onco-Hematology Department, S Maria delle Croci Hospital, viale Randi 5, 48121, Ravenna, Italy

    Published Online:https://doi.org/10.2217/fon-2018-0095

    Lung cancer is the leading cause of cancer mortality worldwide. Activating mutations in the EGFR and rearrangements in the anaplastic lymphoma kinase (ALK) or ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) genes have been identified as oncogenic drivers in non-small-cell lung cancer. Development of specific small-molecule tyrosine kinase inhibitors, able to interfere with tumor growth and metastatic spread, dramatically changed the natural history of oncogene-addicted non-small-cell lung cancer. However, despite advances in targeted therapies, all patients inevitably develop acquired resistance to tyrosine kinase inhibitors. Novel promising and effective treatments are under investigations.

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017).
    • 2 Weinstein IB. Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science. 297(5578), 63–64 (2002).
    • 3 Chan BA, Hughes BGM. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res. 4(1), 36–54 (2015).
    • 4 Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361(10), 947–957 (2009).
    • 5 Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362(25), 2380–2388 (2010).
    • 6 Zhou C, Wu YL, Chen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, Phase III study. Lancet Oncol. 12(8), 735–742 (2011).
    • 7 Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised Phase III trial. Lancet Oncol. 13(3), 239–246 (2012).
    • 8 Sequist LV, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31(27), 3327–3334 (2013).
    • 9 Wu YL, Zhou C, Hu CP et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised Phase III trial. Lancet Oncol. 15(2), 213–222 (2014).
    • 10 Solomon BJ, Mok T, Kim DW et al. First line crizotinib versus chemotherapy in ALK-positive lung cancer: results of a Phase III study (PROFILE 1014). N. Engl. J. Med. 371, 2167–2177 (2014). •• First study to demonstrate the superiority of an anaplastic lymphoma kinase (ALK) inhibitor over platinum-based chemotherapy.
    • 11 Shaw AT, Ou SH, Bang YJ et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371(21), 1963–1971 (2014).
    • 12 Peters S, Camidge DR, Shaw AT et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377(9), 829–838 (2017).
    • 13 Soria JC, Tan DS, Chiari R et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, Phase III study. Lancet. 389(10072), 917–929 (2017).
    • 14 Camidge D, Bazhenova L, Salgia R et al. Safety and efficacy of brigatinib (AP26113) in advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). J. Clin. Oncol. 33(15), 8062–8062 (2015).
    • 15 Shaw AT, Bauer T, Felip E et al. Efficacy and safety of lorlatinib in patients (pts) with ALK+ non-small cell lung cancer (NSCLC) with one or more prior ALK tyrosine kinase inhibitor (TKI): a Phase I/II study (abstract 9006). J. Clin. Oncol. 35(15), 9006–9006 (2017).
    • 16 Janku F, Janku F, Garrido-Laguna I et al. Novel therapeutic targets in non-small cell lung cancer. J. Thorac. Oncol. 6(9), 1601–1612 (2011).
    • 17 Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 98(12), 1817–1824 (2007).
    • 18 Tsao AS, Scagliotti GV, Bunn PA Jr et al. Scientific advances in lung cancer 2015. J. Thorac. Oncol. 11(5), 613–638 (2016).
    • 19 Sharma SV, Bell DW, Settleman J et al. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer. 7(3), 169–181 (2007).
    • 20 Lohinai Z, Hoda MA, Fabian K et al. Distinct epidemiology and clinical consequence of classic versus rare EGFR mutations in lung adenocarcinoma. J. Thorac. Oncol. 10(5), 738–746 (2015).
    • 21 Kobayashi Y, Togashi Y, Yatabe Y et al. EGFR Exon 18 mutations in lung cancer: molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first- or third-generation TKIs. Clin. Cancer Res. 21(23), 5305–5313 (2015).
    • 22 Jiang J, Greulich H, Jänne PA et al. Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res. 65(19), 8968–8974 (2005).
    • 23 Mayo-de-Las-Casas C, Jordana-Ariza N, Garzón-Ibañez M et al. Large scale, prospective screening of EGFR mutations in the blood of advanced NSCLC patients to guide treatment decisions. Ann Oncol. 28(9), 2248–2255 (2017).
    • 24 Han JY, Park K, Kim SW et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J. Clin. Oncol. 30(10), 1122–1128 (2012).
    • 25 Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised Phase III trial. Lancet Oncol. 11(2), 121–128 (2010).
    • 26 Wu YL, Zhou C, Liam CK et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the Phase III, randomized, open-label, ENSURE study. Ann Oncol. 26(9), 1883–1889 (2015).
    • 27 Patil VM, Noronha V, Joshi A et al. Phase III study of gefitinib or pemetrexed with carboplatin in EGFR-mutated advanced lung adenocarcinoma. ESMO Open. 2(1), e000168 (2017).
    • 28 Yang JJ, Zhou Q, Yan HH et al. A Phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br. J. Cancer. 116(5), 568–574 (2017).
    • 29 Jänne PA, Ou SH, Kim DW et al. Dacomitinib as first-line treatment in patients with clinically or molecularly selected advanced non-small-cell lung cancer: a multicentre, open-label, Phase II trial. Lancet Oncol. 15(13), 1433–1441 (2014).
    • 30 Paz-Ares L, Tan EH, O'Byrne K et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the Phase IIb LUX-Lung 7 trial. Ann Oncol. 28(2), 270–277 (2017).
    • 31 Wu YL, Cheng Y, Zhou X et al. Dacomitinib versus gefitinib as first-line treatment for patientswith EGFR mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomized, open-label, Phase III trial. Lancet Oncol. 18(11), 1454–1466 (2017).
    • 32 Soria JC, Ohe Y, Vansteenkiste J et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378(2), 113–125 (2018). •• First study to compare a third-generation inhibitor with the first-generation ones in patients with advanced EGFR+ non-small-cell lung cancer patients.
    • 33 Gainor JF, Shaw A. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J. Clin. Oncol. 31(31), 3987–3996 (2013).
    • 34 Zhou W, Ercan D, Chen L et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462(7276), 1070–1074 (2009).
    • 35 Romanidou OU, Landi L, Cappuzzo F et al. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer. Ther. Adv. Med. Oncol. 8(3), 176–187 (2016).
    • 36 Janne PA, Yang JC, Kim DW et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372(18), 1689–1699 (2015).
    • 37 Yang JC, Ahn MJ, Kim D et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study Phase II extension component. J. Clin. Oncol. 35(12), 1288–1296 (2017).
    • 38 Goss G, Tsai CM, Shepherd FA et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, Phase II study. Lancet Oncol. 17(12), 1643–1652 (2016).
    • 39 Mok TS, Wu Y-L, Ahn M-J et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376(7), 629–640 (2017).
    • 40 De Marinis F, Cho BC, Kim DW et al. ASTRIS: a real world treatment study of osimertinib in patients (pts) with EGFR T790M positive non-small cell lung cancer (NSCLC). J. Clin. Oncol. 35(15), 9036–9036 (2017).
    • 41 Ramalingam SS, Yang JC, Lee CK et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J. Clin. Oncol. 36(9), 841–849 (2018).
    • 42 Rosell R, Dafni U, Felip E et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, Phase II trial. Lancet Respir. Med. 5(5), 435–444 (2018).
    • 43 Seto T, Kato T, Nishio M et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, Phase II study. Lancet Oncol. 15(11), 1236–1244 (2017).
    • 44 Shaw AT, Yeap BY, Mino-Kenudson M et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27(26), 4247–4253 (2009).
    • 45 Camidge DR, Kono S, Flacco A et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin. Cancer Res. 16(22), 5581–5590 (2010).
    • 46 Li T, Kung H, Mack P et al. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J. Clin. Oncol. 31(8), 1039–1049 (2013).
    • 47 Cui JJ, Tran-Dube M, Shen H et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal–epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54(18), 6342–6363 (2011).
    • 48 Shaw AT, Kim DW, Nakagawa K et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368(25), 2385–2394 (2013).
    • 49 Doebele RC, Pilling AB, Aisner DL et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18(5), 1472–1482 (2012).
    • 50 Choi YL, Soda M, Yamashita Y et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363(18), 1734–1739 (2010).
    • 51 Katayama R, Shaw A, Khan T et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4(120), 120ra17 (2012).
    • 52 Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumors: learning from lung cancer. Nat. Rev. Clin. Oncol. 11(8), 473–481 (2014). •• Comprehensive review of mechanisms of resistance to tyrosine kinase inhibitors.
    • 53 Awad MM, Shaw AT. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol. 12(7), 429–439 (2014).
    • 54 Gainor JF, Dardaei L, Yoda S et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6(10), 1118–1133 (2016).
    • 55 Shaw AT, Kim TM, Crinò L et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, Phase III trial. Lancet Oncol. 18(7), 874–886 (2017).
    • 56 Hida T, Nokihara H, Kondo M et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive non-small cell lung cancer (ALK+ NSCLC): primary results from the J-ALEX study. Presented at: 17th International Association for Study of Lung Cancer. Vienna, Austria, 4–7 December 2016. •• First study to compare two ALK inhibitors in patients with advanced ALK+ non-small-cell lung cancer patients.
    • 57 Novello S, Mazieres J, Oh I et al. Primary results from the Phase III ALUR study of alectinib versus chemotherapy in previously treated ALK+ non-small-cell lung cancer (NSCLC). Ann. Oncol. 8(5), v605–v649 (2017).
    • 58 Kim DW, Tiseo M, Ahn MJ et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter Phase II trial. J. Clin. Oncol. 35(15), e20502–e20502 (2017).
    • 59 Friboulet L, Li N, Katayama R et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 4(6), 662–673 (2014).
    • 60 Shaw AT, Kim DW, Mehra R et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370(26), 1189–1197 (2014).
    • 61 Crinò L, Ahn MJ, De Marinis F et al. Multicenter Phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J. Clin. Oncol. 34(24), 2866–2873 (2016).
    • 62 Felip E, Orlov S, Park K et al. ASCEND-3: a single-arm, open-label, multicenter Phase II study of ceritinib in ALKi-naive adult patients (pts) with ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC). J. Clin. Oncol. 33, 8060 (2015).
    • 63 Kodama T, Tsukaguchi T, Satoh Y et al. Alectinib shows potent antitumor activity against RET rearranged non small cell lung cancer. Mol. Canc. Ther. 13(12), 2910–2918 (2014).
    • 64 Shaw A, West H, Socinski MA et al. Updated efficacy/safety data from the Phase II NP28761 study of alectinib in ALK + NSCLC. J. Thorac. Oncol. 12(1), S378 (2017).
    • 65 Ou SH, Ahn JS, De Petris L et al. Alectinib in crizotinib refractory ALK-rearranged non small cell lung cancer: a Phase II global study. J. Clin. Oncol. 34(7), 661–668 (2016).
    • 66 Squillace R, Anjum R, Miller D et al. AP26113 possesses pan-inhibitory activity versus crizotinib-resistant ALK mutants and oncogenic ROS1 fusions. Cancer Res. 73(8), 5655 (2013).
    • 67 Johnson T, Richardson P, Bailey S et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16 trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4(metheno)pyrazolo[4,3-h][2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile (PF 06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J. Med. Chem. 57(11), 4720–4744 (2014).
    • 68 Bergethon K, Shaw AT, Ou SHI et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 30(8), 863–870 (2012).
    • 69 Bubendorf L, Büttner R, Al-Dayel F et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 469(5), 489–503 (2016).
    • 70 Shaw A, Riley GJ, Bang Y-J et al. Crizotinib in advanced ROS1- rearranged non-small cell lung cancer (NSCLC): updated results from PROFILE 1001. Ann. Oncol. 27(6), 1206PD (2016).
    • 71 Moro-Sibilot D, Faivre L, Zalcman G et al. Crizotinib in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC). Preliminary results of the ACSe Phase II trial. J. Clin. Oncol. 33(15), 8065–8065 (2015).
    • 72 Goto K, Yang JCH, Kim DW et al. Phase II study of crizotinib in East Asian patients with ROS1-positive advanced non-small cell lung cancer. J. Clin. Oncol. 34(15), 9022–9022 (2016).
    • 73 Landi L, Chella A, Chiari R et al. Crizotinib in ROS1 rearranged or MET deregulated non-small-cell lung cancer (NSCLC): preliminary results of the Metros Trial. Presented at: AIOM Annual Meeting. Roma, Italy, 28–30 October 2016.
    • 74 Mazieres J, Zalcman G, Crino L et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J. Clin. Oncol. 33(9), 992–999 (2015).
    • 75 Michels S, Gardizi M, Schmalz P et al. MA07.05 EUCROSS: a European Phase II trial of crizotinib in advanced adenocarcinoma of the lung harboring ROS1 rearrangements – preliminary results. J. Thorac. Oncol. 12(1), S379–S380 (2017).
    • 76 Costa DB, Kobayashi S, Pandya SS et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 29(15), e443–445 (2011).
    • 77 Cho BC, Lim SM, Kim HR et al. Ceritinib in ROS1-rearranged 38 non-small-cell lung cancer: an update of Korean nationwide Phase II study. J. Thorac. Oncol. 12(S1), S193 (2017).
    • 78 Drilon A, De Braud FG, Siena S et al. Entrectinib, an oral pan-Trk, ROS1, and ALK inhibitor in TKI-naive patients with advanced solid tumors harboring gene rearrangements: Uupdated Phase I results. Cancer Res. 76(14), CT007 (2016).
    • 79 Solomon BJ, Bauer TM, Felip E et al. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC). J. Clin. Oncol. 34(15), 9009–9009 (2016).
    • 80 Drilon A, Somwar R, Wagner JP et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin. Cancer Res. 22(10), 2351–2358 (2015).
    • 81 Chong CR, Bahcall M, Capelletti M et al. Identification of existing drugs that effectively target NTRK1- and ROS1-rearrangements in lung cancer. Clin. Cancer Res. 23(1), 204–213 (2017).
    • 82 Magnuson WJ, Lester-Coll NH, Wu AJ et al. Management of brain metastases in tyrosine kinase inhibitor-naive epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J. Clin. Oncol. 35(10), 1070–1077 (2017).
    • 83 Costa DB, Shaw AT, Ou SH et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J. Clin. Oncol. 33(17), 1881–1888 (2015). •• First data that highlighted the frequency of brain progression in crizotinib-treated patients.
    • 84 Kodama T, Hasegawa M, Takanashi K et al. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother. Pharmacol. 74(5), 1023–1028 (2014).
    • 85 Gadgeel SM, Shaw AT, Govindan R et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J Clin. Oncol. 34(34), 4079–4085 (2016).
    • 86 Gainor JF, Sherman CA, Willounghby K et al. Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib. J. Thorac. Oncol. 10(2), 232–236 (2015).
    • 87 Mok TS, Wu YL, Ahn MJ et al. CNS response to osimertinib in patients with T790M-positive advanced non-small cell lung cancer: data from a randomized Phase III trial (AURA3) (Abstract 9005). Presented at: Asco Annual Meeting. Chicago, IL, USA, 2–6 June 2017.
    • 88 Park S, Park TS, Choi CM et al. Survival benefit of pemetrexed in lung adenocarcinoma patients with anaplastic lymphoma kinase gene rearrangements. Clin. Lung Cancer. 16(5), e83–e89 (2015).
    • 89 Reck M, Rodriguez-Abreu D, Robinson AG et al. Pembrolizumab versus chemotherapy for PD-L1 positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016). •• First study to demonstrate a programmed cell death protein-1 inhibitor as superior to platinum-based chemotherapy in the first-line setting.
    • 90 Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373(17), 1627–1639 (2015).
    • 91 Herbst RS, Baas P, Kim DW et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027), 1540–1550 (2016).
    • 92 Rittmeyer A, Barlesi F, Waterkamp D et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a Phase III, open-label, multicentre randomised controlled trial. Lancet 389(10066), 255–265 (2017).
    • 93 Akbay EA, Koyama S, Carretero J et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3(12), 1355–1363 (2013).
    • 94 D'Incecco A, Andreozzi M, Ludovini V et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br. J. Cancer. 112(1), 95–102 (2015).
    • 95 Gainor JF, Shaw AT, Sequist LV et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22(18), 4585–4593 (2016).
    • 96 Peters S, Gettinger S, Johnson ML et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J. Clin. Oncol. 35(24), 2781–2789 (2017).
    • 97 Lee CK, Man J, Lord S et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer – a meta-analysis. J. Thorac. Oncol. 12(2), 403–407 (2017).
    • 98 Rizvi NA, Hellmann MD, Snyder A et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230), 124–128 (2015).
    • 99 Ahn MJ, Yang J, Yu H et al. Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON Phase Ib trial. J. Thorac. Oncol. 11(4), S115 (2016).