We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Noninvasive strategies for breast cancer early detection

    Giovanna Trecate

    Department of Imaging Diagnosis & Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

    ,
    Pablo Martinez-Lozano Sinues

    Department of Chemistry & Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

    &
    Rosaria Orlandi

    *Author for correspondence:

    E-mail Address: rosaria.orlandi@istitutotumori.mi.it

    Molecular Targeting Unit, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

    Published Online:https://doi.org/10.2217/fon-2015-0071

    Breast cancer screening and presurgical diagnosis are currently based on mammography, ultrasound and more sensitive imaging technologies; however, noninvasive biomarkers represent both a challenge and an opportunity for early detection of cancer. An extensive number of potential breast cancer biomarkers have been discovered by microarray hybridization or sequencing of circulating DNA, noncoding RNA and blood cell RNA; multiplex analysis of immune-related molecules and mass spectrometry-based approaches for high-throughput detection of protein, endogenous peptides, circulating and volatile metabolites. However, their medical relevance and their translation to clinics remain to be exploited. Once they will be fully validated, cancer biomarkers, used in combination with the current and emerging imaging technologies, represent an avenue to a personalized breast cancer diagnosis.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98(19), 10869–10874 (2001). • It reports the subtype classification of breast carcinoma based on variation of gene-expression pattern.
    • 2 Curtis C, Shah SP, Chin SF et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403), 346–352 (2012).
    • 3 The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012).
    • 4 Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12(7), 381–394 (2015).
    • 5 Balduzzi S, Mantarro S, Guarneri V et al. Trastuzumab-containing regimens for metastatic breast cancer. Cochrane Database Syst. Rev. 6, CD006242 (2014).
    • 6 Fitzmaurice C, Dicker D, Pain A et al. The global burden of cancer. JAMA Oncol. 1(4), 505–527 (2013).
    • 7 Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL et al. Challenges to effective cancer control in China, India, and Russia. Lancet Oncol. 15(5), 489–538 (2014).
    • 8 Etzioni R, Urban N, Ramsey S et al. The case for early detection. Nat. Rev. Cancer 3(4), 243–252 (2003).
    • 9 Cancer Statistics, SEER Stat Fact Sheets: Breast Cancer (2015). http://seer.cancer.gov/statfacts/html/breast.html.
    • 10 Andre F, Mardis E, Salm M, Soria JC, Siu LL, Swanton C. Prioritizing targets for precision cancer medicine. Ann. Oncol. 25(12), 2295–2303 (2014).
    • 11 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 339(6127), 1546–1558 (2013).
    • 12 Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C. Translational implications of tumor heterogeneity. Clin. Cancer Res. 21(6), 1258–1266 (2015).
    • 13 Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J. Pathol. 205(2), 248–254 (2005).
    • 14 Umar A, Dunn BK, Greenwald P. Future directions in cancer prevention. Nat. Rev. Cancer 12(12), 835–848 (2012).
    • 15 Cimino-Mathews A, Foote JB, Emens LA. Immune targeting in breast cancer. Oncology 29(5), 375–85 (2015).
    • 16 Matsumoto H, Koo SL, Dent R, Tan PH, Iqbal J. Role of inflammatory infiltrates in triple negative breast cancer. J. Clin. Pathol. 68(7), 506–510 (2015).
    • 17 Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43(5), 1423–1449 (2014).
    • 18 Alfaro JA, Sinha A, Kislinger T, Boutros PC. Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat. Methods 11(11), 1107–1113 (2014).
    • 19 Mitchell P. Proteomics retrenches. Nat. Biotechnol. 28(7), 665–670 (2010).
    • 20 Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature 455(7216), 1054–1056 (2008).
    • 21 Diamandis EP, van der Merwe DE. Plasma protein profiling by MS for cancer diagnosis: opportunities and limitations. Clin. Cancer Res. 11(3), 963–965 (2005).
    • 22 Chan DW, Beveridge RA, Muss H et al. Use of ruquant BR radioimmunoassay for early detection of breast cancer recurrence in patients with stage II and stage III disease. J. Clin. Oncol. 15(6), 2322–2328 (1997).
    • 23 Glasziou P, Houssami N. The evidence base for breast cancer screening. Prev. Med. 53(3), 100–102 (2011).
    • 24 Coldman A, Phillips N, Wilson C et al. Pan-Canadian study of mammography screening and mortality from breast cancer. J. Natl Cancer Inst. 106(11), dju261 (2014).
    • 25 Lauby-Secretan B, Scoccianti C, Loomis D et al. International Agency for Research on Cancer Handbook Working Group. Breast-cancer screening – viewpoint of the IARC Working Group. N. Engl. J. Med. 372(24), 2353–2358 (2015).
    • 26 Kuhl CK. Why do purely intraductal cancers enhance on breast MR images? Radiology 253(2), 281–283 (2009). • It enables to improve sensitivity of MRI, even in preinvasive carcinoma.
    • 27 Sardanelli F, Podo F. Breast MR imaging in women at high-risk of breast cancer. Is something changing in early breast cancer detection? Eur. Radiol. 17(4), 873–887 (2007).
    • 28 US Preventive Services Task Force. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 151(10), 716–726 (2009).
    • 29 Kuhl CK, Schrading S, Leutner CC et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 23(33), 8469–8476 (2005). • It is the first report focused on the relevance of MRI in early detection of breast carcinoma in high familial risk women.
    • 30 Smith RA, Duffy SW, Gabe R, Tabar L, Yen AM, Chen TH. The randomized trials of breast cancer screening: what have we learned? Radiol. Clin. North. Am. 42(5), 793–806 (2004).
    • 31 Ravert PK, Huffaker C. Breast cancer screening in women: an integrative literature review. J. Am. Acad. Nurse Pract. 22(12), 668–673 (2010).
    • 32 Kaplan SS. Clinical utility of bilateral whole-breast US in the evaluation of women with dense breast tissue. Radiology 221(3), 641–649 (2001).
    • 33 Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133(2), 275–288 (1971). • It is the pioneer study on cancer angiogenesis and represents the biological basis of MRI interpretation.
    • 34 Sardanelli F, Podo F, Santoro F et al. High Breast Cancer Risk Italian 1 (HIBCRIT-1) Study. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the High Breast Cancer Risk Italian 1 study): final results. Invest. Radiol. 46(2), 94–105 (2011). • It confirms the validity of MRI for diagnosis in mutation carrier women and endorses the role of MRI for dedicated programs of screening in women at high risk.
    • 35 Kuhl CK, Weigel S, Schrading S et al. Prospective multicenter cohort study to refine management reccomendations for women at elevated familial risk of breast cancer: the EVA trial. J. Clin. Oncol. 28(9), 1450–1457 (2010).
    • 36 Klijn JG. Early diagnosis of hereditary breast cancer by magnetic resonance imaging: what is realistic? J. Clin. Oncol. 28(9), 1441–1445 (2010).
    • 37 Furman-Haran E, Schechtman E, Kelcz F, Kirshenbaum K, Degani H. Magnetic resonance imaging reveals functional diversity of the vasculature in benign and malignant breast lesions. Cancer 104(4), 708–718 (2005).
    • 38 Moon M, Cornfeld D, Weinreb J. Dynamic contrast-enhanced breast MR imaging. Magn. Reson. Imaging Clin. N. Am. 17(2), 351–362 (2009).
    • 39 Guo Y, Cai YQ, Cai ZL et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J. Magn. Reson. Imaging 16(2), 172–178 (2002).
    • 40 Katz-Brull R, Lavin PT, Lenkinski RE. Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J. Natl Cancer Inst. 94(16), 1197–1203 (2002).
    • 41 Leong KM, Lau P, Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J. Med. Imaging Radiat. Oncol. 59(3), 268–277 (2015).
    • 42 Yamamoto S, Maki DD, Korn RL, Kuo MD Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am. J. Roentgenol. 199(3), 654–632 (2012).
    • 43 Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273(2), 365–372 (2014).
    • 44 Yamamoto S, Han W, Kim Y et al. Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast-enhanced MR imaging, long noncoding RNA, and metastasis. Radiology 275(2), 384–392 (2015).
    • 45 Silva A, Bullock M, Calin G. The Clinical Relevance of Long noncoding RNAs in Cancer. Cancers 7(4), 2169–2182 (2015).
    • 46 Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics 6(23), 6326–6253 (2006).
    • 47 Beretov J, Wasinger VC, Graham PH, Millar EK, Kearsley JH, Li Y. Proteomics for breast cancer urine biomarkers. Adv. Clin. Chem. 63, 123–167 (2014).
    • 48 Bauça JM, Martínez-Morillo E, Diamandis EP. Peptidomics of urine and other biofluids for cancer diagnostics. Clin. Chem. 60(8), 1052–1061 (2014).
    • 49 Hu S, Loo JA, Wong DT. Human saliva proteome analysis and disease biomarker discovery. Expert. Rev. Proteomics. 4(4), 531–538 (2007).
    • 50 Streckfus C, Bigler L. The use of soluble, salivary c-erbB-2 for the detection and post-operative follow-up of breast cancer in women: the results of a five-year translational research study. Adv. Dent. Res. 18(1), 17–24 (2005).
    • 51 Cazzaniga M, Decensi A, Bonanni B, Luini A, Gentilini O. Biomarkers for risk assessment and prevention of breast cancer. Curr. Cancer Drug Targets. 9(4), 482–499 (2009).
    • 52 Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers – blood-based strategies to detect and monitor cancer. Nat. Rev. Clin. Oncol. 8(3), 142–150 (2011).
    • 53 Bidard FC, Peeters DJ, Fehm T et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 15(4), 406–414 (2014).
    • 54 Koh CH, Bhoo-Pathy N, Ng KL et al. Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br. J. Cancer 113(1), 150–158 (2015).
    • 55 Aarøe J, Lindahl T, Dumeaux V et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res. 12(1), R7 (2010).
    • 56 Best MG, Sol N, Kooi I et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28(5), 666–676 (2015). • It proposes platelets as a tool for cancer diagnosis and classification.
    • 57 Vockley JG, Niederhuber JE. Diagnosis and treatment of cancer using genomics. BMJ 350, h1832 (2015).
    • 58 Kittaneh M, Montero AJ, Glück S. Molecular profiling for breast cancer: a comprehensive review. Biomark. Cancer 5, 61–70 (2013).
    • 59 Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol. Cell. 58(4), 586–597 (2015).
    • 60 Dawson SJ, Tsui DW, Murtaza M et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368(13), 1199–1209 (2013).
    • 61 Olsson E, Winter C, George A et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7(8), 1034–1047 (2015).
    • 62 Warton K, Mahon KL, Samimi G Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr. Relat. Cancer. 23(3), R157–R171 (2016).
    • 63 Martínez-Galán J, Torres-Torres B, Núñez MI et al. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients. BMC Cancer 14, 59 (2014).
    • 64 De Leeneer K, Claes K. Noncoding RNA molecules as potential biomarkers in breast cancer. Adv. Exp. Med. Biol. 867, 263–275 (2015).
    • 65 Redova M, Sana J, Slaby O. Circulating miRNAs as new blood-based biomarkers for solid cancers. Future Oncol. 9(3), 387–402 (2013).
    • 66 Pimentel F, Bonilla P, Ravishankar YG et al. Circulating microRNAs as noninvasive cancer biomarkers in breast cancer. J. Lab. Autom. 20(5), 574–588 (2015).
    • 67 Zhang L, Song X, Wang X et al. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res. Treat. 152(1), 199–208 (2015).
    • 68 Lacombe J, Mangé A, Solassol J. Use of autoantibodies to detect the onset of breast cancer. J. Immunol. Res. 2014, 574981 (2014).
    • 69 Diaconu I, Cristea C, Hârceagă V, Marrazza G, Berindan-Neagoe I, Săndulescu R. Electrochemical immunosensors in breast and ovarian cancer. Clin. Chim. Acta 425, 128–138 (2013).
    • 70 Chen P, Chung MT, McHugh W et al. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9(4), 4173–4181 (2015).
    • 71 Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 8(11), 887–899 (2008).
    • 72 Carlsson A, Wingren C, Kristensson M et al. Molecular serum portraits in patients with primary breast cancer predict the development of distant metastases. Proc. Natl Acad. Sci. USA 108(34), 14252–14257 (2011).
    • 73 Hong CC, Yao S, McCann SE et al. Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res. Treat. 139(2), 477–488 (2013).
    • 74 Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in MS-based clinical biomarker discovery. Clin. Proteom. 13, 1 (2016).
    • 75 Zaidi AH, Gopalakrishnan V, Kasi PM et al. Evaluation of a 4-protein serum biomarker panel-biglycan, annexin-A6, myeloperoxidase, and protein S100-A9 (B-AMP)-for the detection of esophageal adenocarcinoma. Cancer 120(24), 3902–3913 (2014).
    • 76 Joshi S, Tiwari AK, Mondal B, Sharma A. Oncoproteomics. Clin. Chim. Acta 412(3–4), 217–226 (2011).
    • 77 Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15(9), 540–555 (2015).
    • 78 Chen K, Gentry-Maharaj A, Burnell M et al. Microarray glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J. Proteome Res. 12(3), 1408–1418 (2013).
    • 79 Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat. Rev. 40(1), 129–138 (2014).
    • 80 Pitteri SJ, Amon LM, Busald Buson T et al. Detection of elevated plasma levels of epidermal growth factor receptor before breast cancer diagnosis among hormone therapy users. Cancer Res. 70(21), 8598–606 (2010).
    • 81 Villanueva J, Shaffer DR, Philip J et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest. 116(1), 271–284 (2006). • It proposes proteolytic degradative patterns of the serum peptidome as surrogate marker for detection and classification of cancer.
    • 82 Li Y, Li Y, Chen T et al. Circulating proteolytic products of carboxypeptidase N for early detection of breast cancer. Clin. Chem. 60(1), 233–242 (2014).
    • 83 Diamandis EP. Peptidomics for cancer diagnosis: present and future. J. Proteome Res. 5(9), 2079–2082 (2006).
    • 84 Orlandi R, De Bortoli M, Ciniselli CM et al. Hepcidin and ferritin blood level as noninvasive tools for predicting breast cancer. Ann. Oncol. 25(2), 352–357 (2014).
    • 85 Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009).
    • 86 Wikoff WR, Hanash S, DeFelice B et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 33(33), 3880–3886 (2015).
    • 87 Sreekumar A, Poisson LM, Rajendiran TM et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231), 910–914 (2009).
    • 88 Günther UL. Metabolomics biomarkers for breast cancer. Pathobiology 82(3–4), 153–165 (2015).
    • 89 McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integrative Cancer Therapies 5(1), 30–39 (2006).
    • 90 Ehmann R, Boedeker E, Friedrich U et al. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur. Respir. J. 39(3), 669–676 (2012). • It provides strong evidence that breath indeed contains relevant biochemical information for cancer detection.
    • 91 Phillips M, Gleeson K, Hughes JMB et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353(9168), 1930–1933 (1999).
    • 92 Phillips M, Cataneo RN, Cummin ARC et al. Detection of lung cancer with volatile markers in the breath. Chest 123(6), 2115–2123 (2003).
    • 93 Phillips M, Cataneo RN, Ditkoff BA et al. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treat. 99(1), 19–21 (2006).
    • 94 Phillips M, Cataneo RN, Ditkoff BA et al. Volatile markers of breast cancer in the breath. Breast J. 9(3), 184–191 (2003).
    • 95 Phillips M, Beatty JD, Cataneo RN et al. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS ONE 9(3), e90226 (2014).
    • 96 Fang M, Ivanisevic J, Benton HP et al. Thermal degradation of small molecules: a global metabolomic investigation. Anal. Chem. 87(21), 10935–10941 (2015).
    • 97 Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J. Breath. Res. 4(2), 026003 (2010).
    • 98 Bajtarevic A, Ager C, Pienz M et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9(1), 348 (2009).
    • 99 Blake RS, Monks PS, Ellis AM. Proton-transfer reaction MS. Chem. Rev. 109(3), 861–896 (2009).
    • 100 Lindinger W, Hansel A, Jordan A. Proton-transfer-reaction MS (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 27(5), 347–354 (1998).
    • 101 Huang J, Kumar S, Abbassi-Ghadi N, Španěl P, Smith D, Hanna GB. Selected ion flow tube MS analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer. Anal. Chem. 85(6), 3409–3416 (2013).
    • 102 Kumar S, Huang J, Cushnir JR, Španěl P, Smith D, Hanna GB. Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer. Anal. Chem. 84(21), 9550–9557 (2012).
    • 103 Spaněl P, Smith D, Holland TA, Al Singary W, Elder JB. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube MS. Rapid. Commun. Mass Spectrom. 13(14), 1354–1359 (1999).
    • 104 Sinues Martinez-Lozano P, Landoni E, Miceli R et al. Secondary electrospray ionization-MS and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: a pilot study. J. Breath Res. 9(3), 031001 (2015).
    • 105 He J, Sinues Martinez-Lozano P, Hollmén M, Li X, Detmar M, Zenobi R. Fingerprinting breast cancer vs. normal mammary cells by mass spectrometric analysis of volatiles. Sci. Rep. 4, 5196 (2014).
    • 106 Miekisch W, Herbig J, Schubert JK. Data interpretation in breath biomarker research: pitfalls and directions. J. Breath. Res. 6(3), 036007 (2012).
    • 107 Righettoni M, Tricoli A, Pratsinis SE. Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82(9), 3581–3587 (2010).
    • 108 Sinues Martinez-Lozano P, Zenobi R, Kohler M. Analysis of the exhalome: a diagnostic tool of the future. Chest 144(3), 746–749 (2013).
    • 109 Henry NL, Hayes DF. Cancer biomarkers. Mol. Oncol. 6(2), 140–146 (2012).
    • 110 Sestini S, Boeri M, Marchiano A et al. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget 6(32), 32868–32877 (2015).
    • 111 Grenabo, Bergdahl A, Wilderäng U et al. Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the Göteborg randomised screening trial. Eur. Urol. doi:10.1016/j.eururo.2015.12.006 (2015) (Epub ahead of print).