We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where

    Aaron Y Lai

    Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, CA M5S 1A2, Canada

    &
    JoAnne McLaurin

    * Author for correspondence

    Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, CA M5S 1A2, Canada.

    Published Online:https://doi.org/10.2217/fnl.12.6

    Accumulation of senile plaques consisting of amyloid-β peptide (Aβ) aggregates is a prominent pathological feature in Alzheimer’s disease. Effective clearance of Aβ from the brain parenchyma is thought to regulate the development and progression of the disease. Macrophages in the brain play an important role in Aβ clearance by a variety of phagocytic and digestive mechanisms. Subpopulations of macrophages are heterogeneous such that resident microglia in the parenchyma, blood macrophages infiltrating from the periphery and perivascular macrophages residing along cerebral vessels make functionally distinct contributions to Aβ clearance. Despite phenotypic similarities between the different macrophage subsets, a series of in vivo models have been derived to differentiate their relative impacts on Aβ dynamics as well as the molecular mechanisms underlying their activities. This review discusses the key findings from these models and recent research efforts to selectively enhance macrophage clearance of Aβ.

    Papers of special note have been highlighted as: ▪▪ of considerable interest

    References

    • Citron M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov.9(5),387–398 (2010).
    • Wenk GL. Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry64(Suppl. 9),7–10 (2003).
    • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem.283(44),29615–29619 (2008).
    • Mohamed A, Cortez L, de Chaves EP. Aggregation state and neurotoxic properties of alzheimer β-amyloid peptide. Curr. Protein. Pept. Sci.12(3),235–257 (2011).
    • Elder GA, Gama Sosa MA, De Gasperi R. Transgenic mouse models of Alzheimer’s disease. Mt Sinai J. Med.77(1),69–81 (2010).
    • Walsh DM, Klyubin I, Fadeeva JV et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature416(6880),535–539 (2002).
    • Shankar GM, Li S, Mehta TH et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med.14(8),837–842 (2008).
    • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH. Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am. J. Pathol.132(1),86–101 (1988).
    • Haga S, Akai K, Ishii T. Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. An immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol.77(6),569–575 (1989).
    • 10  Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol.24(3),173–182 (1989).
    • 11  el Hachimi KH, Foncin JF. Do microglial cells phagocyte the beta/A4-amyloid senile plaque core of Alzheimer disease? C. R. Acad. Sci. III317(5),445–451 (1994).
    • 12  Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol.11(11),723–737 (2011).
    • 13  Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol.27,119–145 (2009).
    • 14  Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol.75(3),388–397 (2004).▪▪ Detailed review on the phenotypic markers used to differentiate various macrophage subsets.
    • 15  Dalkara T, Gursoy-Ozdemir Y, Yemisci M. Brain microvascular pericytes in health and disease. Acta Neuropathol.122(1),1–9 (2011).
    • 16  Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl Acad. Sci. USA88(16),7438–7442 (1994).
    • 17  Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci.10(11),1387–1394 (2004).
    • 18  de Haas AH, Boddeke HW, Biber K. Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia56(8),888–894 (2008).
    • 19  McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol. Aging28(5),639–647 (2007).
    • 20  Breitner JC, Gau BA, Welsh KA et al. Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology44(2),227–232 (1994).
    • 21  Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol.57(2–3),239–242 (1982).
    • 22  Eikelenboom P, Stam FC. An immunohistochemical study on cerebral vascular and senile plaque amyloid in Alzheimer’s dementia. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.47(1),17–25 (1984).
    • 23  Ishii T, Haga S. Immuno-electron-microscopic localization of complements in amyloid fibrils of senile plaques. Acta Neuropathol.63(4),296–300 (1984).
    • 24  Wisniewski HM, Barcikowska M, Kida E. Phagocytosis of beta/A4 amyloid fibrils of the neuritic neocortical plaques. Acta Neuropathol.81(5),588–590 (1991).
    • 25  Wisniewski HM, Wegiel J, Wang KC, Kujawa M, Lach B. Ultrastructural studies of the cells forming amyloid fibers in classical plaques. Can. J. Neurol. Sci.16(4 Suppl.),535–542 (1989).▪▪ Seminal paper providing the first evidence for differential clearance of amyloid-β peptides (Aβ) by microglia and infiltrating macrophages.
    • 26  Wisniewski HM, Vorbrodt AW, Wegiel J, Morys J, Lossinsky AS. Ultrastructure of the cells forming amyloid fibers in Alzheimer disease and scrapie. Am. J. Med. Genet. Suppl.7,287–297 (1990).
    • 27  Frackowiak J, Wisniewski HM, Wegiel J, Merz GS, Iqbal K, Wang KC. Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol.84(3),225–233 (1992).
    • 28  Akiyama H, Kondo H, Mori H et al. The amino-terminally truncated forms of amyloid beta-protein in brain macrophages in the ischemic lesions of Alzheimer’s disease patients. Neurosci. Lett.219(2),115–118 (1996).
    • 29  Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M. Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am. J. Pathol.154(6),1673–1684 (1999).
    • 30  Stalder M, Deller T, Staufenbiel M, Jucker M. 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol. Aging22(3),427–434 (2001).
    • 31  Avagyan H, Goldenson B, Tse E et al. Immune blood biomarkers of Alzheimer disease patients. J. Neuroimmunol.210(1–2),67–72 (2009).
    • 32  Zaghi J, Goldenson B, Inayathullah M et al. Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy. Acta Neuropathol.117(2),111–124 (2009).
    • 33  Fiala M, Liu PT, Espinosa-Jeffrey A et al. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc. Natl Acad. Sci. USA104(31),12849–12854 (2007).
    • 34  Masoumi A, Goldenson B, Ghirmai S et al. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J. Alzheimers. Dis.17(3),703–717 (2009).
    • 35  Familian A, Eikelenboom P, Veerhuis R. Minocycline does not affect amyloid beta phagocytosis by human microglial cells. Neurosci. Lett.416(1),87–91 (2007).
    • 36  Paresce DM, Chung H, Maxfield FR. Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. J. Biol. Chem.272(46),29390–29397 (1997).
    • 37  Chung H, Brazil MI, Soe TT, Maxfield FR. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer’s amyloid beta-peptide by microglial cells. J. Biol. Chem.274(45),32301–32308 (1999).
    • 38  Majumdar A, Chung H, Dolios G et al. Degradation of fibrillar forms of Alzheimer’s amyloid beta-peptide by macrophages. Neurobiol. Aging29(5),707–715 (2008).
    • 39  Mitrasinovic OM, Murphy GM Jr. Accelerated phagocytosis of amyloid-beta by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J. Biol. Chem.277(33),29889–29896 (2002).
    • 40  Mitrasinovic OM, Vincent VA, Simsek D, Murphy GM Jr. Macrophage colony stimulating factor promotes phagocytosis by murine microglia. Neurosci. Lett.344(3),185–188 (2003).
    • 41  Mitrasinovic OM, Murphy GM Jr. Microglial overexpression of the M-CSF receptor augments phagocytosis of opsonized Abeta. Neurobiol. Aging24(6),807–815 (2003).
    • 42  Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol.7(2),161–167 (2007).
    • 43  Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain132(Pt 4),1078–1092 (2009).
    • 44  Sanchez-Ramos J, Song S, Sava V et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience163(1),55–72 (2009).
    • 45  Boyd TD, Bennett SP, Mori T et al. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J. Alzheimers Dis.21(2),507–518 (2010).
    • 46  Herber DL, Roth LM, Wilson D et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp. Neurol.190(1),245–253 (2004).
    • 47  Herber DL, Mercer M, Roth LM et al. Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J. Neuroimmune Pharmacol.2(2),222–231 (2007).
    • 48  Qiao X, Cummins DJ, Paul SM. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur. J. Neurosci.14(3),474–482 (2001).
    • 49  Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400(6740),173–177 (1999).
    • 50  Morgan D. Immunotherapy for Alzheimer’s disease. J. Intern. Med.269(1),54–63 (2011).
    • 51  Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE. Passage of amyloid beta protein antibody across the blood–brain barrier in a mouse model of Alzheimer’s disease. Peptides23(12),2223–2226 (2002).
    • 52  Farrall AJ, Wardlaw JM. Blood–brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol. Aging30(3),337–352 (2009).
    • 53  Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation10(6),463–470 (2003).
    • 54  Kumar-Singh S, Pirici D, McGowan E et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am. J. Pathol.167(2),527–543 (2005).
    • 55  Dickstein DL, Biron KE, Ujiie M, Pfeifer CG, Jeffries AR, Jefferies WA. Abeta peptide immunization restores blood–brain barrier integrity in Alzheimer disease. FASEB J.20(3),426–433 (2006).
    • 56  Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer‘s disease. PLoS ONE6(8),e23789 (2011).
    • 57  Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6(8),916–919 (2000).
    • 58  Wilcock DM, Rojiani A, Rosenthal A et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J. Neurosci.24(27),6144–6151 (2004).
    • 59  Zhang L, Fiala M, Cashman J et al. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer’s disease patients. J. Alzheimers Dis.10(1),1–7 (2006).
    • 60  Yanagisawa D, Shirai N, Amatsubo T et al. Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer’s disease. Biomaterials31(14),4179–4185 (2010).
    • 61  Hawkes CA, Deng L, Fenili D, Nitz M, McLaurin J. In vivo uptake of beta-amyloid by non-plaque associated microglia. Curr. Alzheimer Res. (2011) (Epub ahead of print).
    • 62  Heppner FL, Greter M, Marino D et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med.11(2),146–152 (2005).
    • 63  Gowing G, Vallières L, Julien JP. Mouse model for ablation of proliferating microglia in acute CNS injuries. Glia53(3),331–337 (2006).
    • 64  Grathwohl SA, Kälin RE, Bolmont T et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat. Neurosci.12(11),1361–1363 (2009).▪▪ Unique experimental model where resident microglia are selectively ablated; provides support for their role as bystanders in Aβ clearance.
    • 65  Rezai-Zadeh K, Gate D, Gowing G, Town T. How to get from here to there: macrophage recruitment in Alzheimer’s disease. Curr. Alzheimer Res.8(2),156–163 (2011).
    • 66  Lee CY, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm.117(8),949–960 (2010).
    • 67  Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron49(4),489–502 (2006).
    • 68  Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science239(4837),290–292 (1988).
    • 69  Malm TM, Koistinaho M, Pärepalo M et al. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol. Dis.18(1),134–142 (2005).
    • 70  Stalder AK, Ermini F, Bondolfi L et al. Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J. Neurosci.25(48),11125–11132 (2005).
    • 71  Mildner A, Schmidt H, Nitsche M et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci.10(12),1544–1553 (2007).
    • 72  Mildner A, Schlevogt B, Kierdorf K et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J. Neurosci.31(31),11159–11171 (2011).▪▪ Pivotal paper demonstrating the importance of various populations of myeloid cells in clearing parenchymal Aβ examined within the same experimental paradigm.
    • 73  Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci.10(12),1538–1543 (2007).
    • 74  Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology220(3),640–646 (2001).
    • 75  Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc. Natl Acad. Sci. USA103(31),11719–11723 (2006).
    • 76  Jordão JF, Ayala-Grosso CA, Markham K et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS ONE5(5),e10549 (2010).
    • 77  Burgess A, Ayala-Grosso CA, Ganguly M, Jordão JF, Aubert I, Hynynen K. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood–brain barrier. PLoS ONE6(11),e27877 (2011).
    • 78  Ueno M, Nakagawa T, Wu B et al. Transporters in the brain endothelial barrier. Curr. Med. Chem.17(12),1125–1138 (2010).
    • 79  Attems J, Jellinger K, Thal DR, van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol.37(1),75–93 (2011).
    • 80  Hawkes CA, McLaurin J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA106(4),1261–1266 (2009).
    • 81  Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res.29(6),313–326 (2009).
    • 82  Naert G, Rivest S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci.31(16),6208–6220 (2011).
    • 83  El Khoury J, Toft M, Hickman SE et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med.13(4),432–438 (2007).
    • 84  Yamamoto M, Horiba M, Buescher JL et al. Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am. J. Pathol.166(5),1475–1485 (2005).
    • 85  Kiyota T, Yamamoto M, Xiong H et al. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS ONE4(7),e6197 (2009).
    • 86  Lee S, Varvel NH, Konerth ME et al. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol.177(5),2549–2562 (2010).
    • 87  Liu Z, Condello C, Schain A, Harb R, Grutzendler J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci.30(50),17091–17101 (2010).
    • 88  Fuhrmann M, Bittner T, Jung CK et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer‘s disease. Nat. Neurosci.13(4),411–413 (2010).
    • 89  Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J. Neurosci.28(25),6333–6341 (2008).
    • 90  Wyss-Coray T, Yan F, Lin AH et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc. Natl Acad. Sci. USA99(16),10837–10842 (2002).
    • 91  Huang SM, Mouri A, Kokubo H et al. Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem.281(26),17941–17951 (2006).
    • 92  Madani R, Poirier R, Wolfer DP et al. Lack of neprilysin suffices to generate murine amyloid-like deposits in the brain and behavioral deficit in vivo. J. Neurosci. Res.84(8),1871–1878 (2006).
    • 93  Farris W, Schütz SG, Cirrito JR et al. Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am. J. Pathol.171(1),241–251 (2007).
    • 94  Marr RA, Rockenstein E, Mukherjee A et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci.23(6),1992–1996 (2003).
    • 95  Iwata N, Mizukami H, Shirotani K et al. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J. Neurosci.24(4),991–998 (2004).
    • 96  Miners JS, Barua N, Kehoe PG, Gill S, Love S. Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J. Neuropathol. Exp. Neurol.70(11),944–959 (2011).
    • 97  Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci.28(33),8354–8360 (2008).▪▪ Demonstrates loss of several aspects of Aβ-degrading capabilities in microglia as a function of age.
    • 98  Mohamed A, Posse de Chaves E. Aβ internalization by neurons and glia. Int. J. Alzheimers Dis.2011,127984 (2011).
    • 99  Huang F, Buttini M, Wyss-Coray T et al. Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid protein precursors. Am. J. Pathol.155(5),1741–1747 (1999).
    • 100  Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc. Natl Acad. Sci. USA107(48),20816–20821 (2010).
    • 101  Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K. Role of Toll-like receptor signalling in Abeta uptake and clearance. Brain129(Pt 11),3006–3019 (2006).
    • 102  Song M, Jin J, Lim JE et al. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease. J. Neuroinflammation8,92 (2011).
    • 103  Richard KL, Filali M, Préfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J. Neurosci.28(22),5784–5793 (2008).
    • 104  Michaud JP, Richard KL, Rivest S. MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol. Neurodegener.6(1),5 (2011).
    • 105  Lim JE, Kou J, Song M et al. MyD88 deficiency ameliorates β-amyloidosis in an animal model of Alzheimer's disease. Am. J. Pathol.179(3),1095–1103 (2011).
    • 106  Tan J, Town T, Mori T et al. CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J. Neurosci.20(20),7587–7594 (2000).
    • 107  Townsend KP, Vendrame M, Ehrhart J et al. CD45 isoform RB as a molecular target to oppose lipopolysaccharide-induced microglial activation in mice. Neurosci. Lett.362(1),26–30 (2004).
    • 108  Zhu Y, Hou H, Rezai-Zadeh K et al. CD45 deficiency drives amyloid-peptide oligomers and neuronal loss in Alzheimer’s disease mice. J. Neurosci.31(4),1355–1365 (2011).
    • 109  Townsend KP, Town T, Mori T et al. CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide. Eur. J. Immunol.35(3),901–910 (2005).
    • 110  Tan J, Town T, Paris D et al. Microglial activation resulting from CD40–CD40L interaction after beta-amyloid stimulation. Science286(5448),2352–2355 (1999).
    • 111  Tan J, Town T, Crawford F et al. Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat. Neurosci.5(12),1288–1293 (2002).
    • 112  Keene CD, Chang RC, Lopez-Yglesias AH et al. Suppressed accumulation of cerebral amyloid {beta} peptides in aged transgenic Alzheimer’s disease mice by transplantation with wild-type or prostaglandin E2 receptor subtype 2-null bone marrow. Am. J. Pathol.177(1),346–354 (2010).▪▪ In vivo manipulation of microglia/macrophages into an anti-inflammatory pro-Aβ-clearing phenotype.
    • 113  Shie FS, Breyer RM, Montine TJ. Microglia lacking E Prostanoid receptor subtype 2 have enhanced Abeta phagocytosis yet lack Abeta-activated neurotoxicity. Am. J. Pathol.166(4),1163–1172 (2005).
    • 114  Town T, Laouar Y, Pittenger C et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med.14(6),681–687 (2008).▪▪ In vivo manipulation of microglia/macrophages into an anti-inflammatory pro-Aβ-clearing phenotype.
    • 115  Salins P, He Y, Olson K, Glazner G, Kashour T, Amara F. TGF-beta1 is increased in a transgenic mouse model of familial Alzheimer’s disease and causes neuronal apoptosis. Neurosci. Lett.430(1),81–86 (2008).
    • 116  Wyss-Coray T, Lin C, Yan F et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat. Med.7(5),612–618 (2001).
    • 117  Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia45(2),208–212 (2004).
    • 118  Lopes KO, Sparks DL, Streit WJ. Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia56(10),1048–1060 (2008).
    • 119  Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol.118(4),475–485 (2009).
    • 120  Szekely CA, Thorne JE, Zandi PP et al. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology23(4),159–169 (2004).
    • 121  Streit WJ. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci.29(9),506–510 (2006).
    • 122  Flanary BE, Streit WJ. Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia45(1),75–88 (2004).
    • 123  Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging33(1),195.e1–12 (2010).
    • 124  Rolyan H, Scheffold A, Heinrich A et al. Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain134(Pt 7),2044–2056 (2011).
    • 201  Clinical Trials Database. http://clinicaltrials.gov/ct2/show/nct01473485?term=ultrasound+mri+brain+tumor&rank=2