We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Early molecular and synaptic dysfunctions in the prodromal stages of Alzheimer’s disease: focus on TNF-α and IL-1β

    Chelsea Cavanagh*

    Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada

    McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada

    *Authors contributed equally

    Search for more papers by this author

    ,
    Jessica Colby-Milley*

    Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada

    McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada

    *Authors contributed equally

    Search for more papers by this author

    ,
    Mark Farso

    Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada

    McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada

    ,
    Slavica Krantic

    Douglas Mental Health University Institute, Dept of Psychiatry, McGill University, 6875 Boul. Lasalle, Montreal, Quebec H4H 1R3, Canada

    McGill University, 845 Sherbrooke St. West. Montreal, Quebec H3A 2T5, Canada

    &
    Published Online:https://doi.org/10.2217/fnl.11.50

    Alterations in cytokine expression as well as deficits in synaptic activity are two features observed in early, prodromal stages of Alzheimer’s disease (AD). The cytokines TNF-α and IL-1β are not only mediators of immune responses, but are also involved in regulating synaptic activity through their effects on neuronal excitability and Hebbian plasticity. We propose that early changes occurring in the AD brain, such as increases in soluble amyloid-β oligomers, may increase the expression of certain cytokines and subsequently cause alterations in cytokine-mediated synaptic activity. A shift of focus towards the prodromal stages of AD, which incorporate the earliest detectable molecular, electrophysiological and behavioral alterations, may provide novel therapeutic targets and potential biomarkers for this currently incurable neurodegenerative disease.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Hardy J. A hundred years of Alzheimer’s disease research. Neuron52(1),3–13 (2006).
    • Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol.30(4),572–580 (1991).
    • Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging21(3),383–421 (2000).
    • Wood JA, Wood PL, Ryan R et al. Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1β or IL-1RA but increases in the associated acute phase proteins IL-6, α 2-macroglobulin and C-reactive protein. Brain Res.629(2),245–252 (1993).
    • Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol.184(1–2),69–91 (2007).
    • Lee YJ, Han SB, Nam SY, Oh KW, Hong JT. Inflammation and Alzheimer’s disease. Arch. Pharm. Res.33(10),1539–1556 (2010).
    • McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairmen: a field in its infancy. J. Alzheimers Dis.19(1),355–361 (2010).
    • Eikelenboom P, Veerhuis R. The importance of inflammatory mechanisms for the development of Alzheimer’s disease. Exp. Gerontol.34(3),453–461 (1999).
    • Hollingworth P, Harold D, Jones L, Owen MJ, Williams J. Alzheimer’s disease genetics: current knowledge and future challenges. Int. J. Geriatr. Psychiat.26(8),793–802 (2011).
    • 10  Hollingworth P, Harold D, Sims R et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet.43(5),429–435 (2011).
    • 11  Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.01.007 (2011) (Epub ahead of print).▪ Provides evidence of early inflammatory markers and microglial activation in a preplaque mouse model of Alzheimer’s disease (AD).
    • 12  Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun.25(2),181–213 (2011).
    • 13  Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol. Ther.128(3),519–548 (2010).
    • 14  Mcafoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev.33(3),355–366 (2009).
    • 15  Malenka RC, Nicoll RA. Long-term potentiation – a decade of progress? Science285(5435),1870–1874 (1999).
    • 16  Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature440(7087),1054–1059 (2006).▪ Determines the role of TNF-α in synaptic scaling.
    • 17  Ogoshi F, Yin HZ, Kuppumbatti Y, Song B, Amindari S, Weiss JH. Tumor necrosis-factor-α (TNF-α) induces rapid insertion of Ca2+-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp. Neurol.193(2),384–393 (2005).
    • 18  Viviani B, Gardoni F, Marinovich M. Cytokines and neuronal ion channels in health and disease. Int. Rev. Neurobiol.82,247–263 (2007).
    • 19  Park KM, Bowers WJ. Tumor necrosis factor-α mediated signaling in neuronal homeostasis and dysfunction. Cell. Signal.22(7),977–983 (2010).
    • 20  Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci.25(12),3219–3228 (2005).
    • 21  Rainey-Smith SR, Andersson DA, Williams RJ, Rattray M. Tumour necrosis factor α induces rapid reduction in AMPA receptor-mediated calcium entry in motor neurones by increasing cell surface expression of the GluR2 subunit: relevance to neurodegeneration. J. Neurochem.113(3),692–703 (2010).
    • 22  Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse35(2),151–159 (2000).
    • 23  Gerber J, Bottcher T, Hahn M, Siemer A, Bunkowski S, Nau R. Increased mortality and spatial memory deficits in TNF-α-deficient mice in ceftriaxone-treated experimental pneumococcal meningitis. Neurobiol. Dis.16(1),133–138 (2004).
    • 24  Fogal B, Hewett SJ. Interleukin-1β: a bridge between inflammation and excitotoxicity? J. Neurochem.106(1),1–23 (2008).
    • 25  Avital A, Goshen I, Kamsler A et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus13(7),826–834 (2003).
    • 26  Goshen I, Kreisel T, Ounallah-Saad H et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology32(8–10),1106–1115 (2007).
    • 27  Yirmiya R, Winocur G, Goshen I. Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol. Learn. Mem.78(2),379–389 (2002).
    • 28  Viviani B, Boraso M. Cytokines and neuronal channels: a molecular basis for age-related decline of neuronal function? Exp. Gerontol.46(2–3),199–206 (2011).▪▪ Recent review addressing the mechanisms of cytokine interaction with neuronal ion channels to regulate neuronal excitability, synaptic plasticity and injury response in normal and pathological aging.
    • 29  Leonoudakis D, Zhao P, Beattie EC. Rapid tumor necrosis factor α-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J. Neurosci.28(9),2119–2130 (2008).
    • 30  Santello M, Bezzi P, Volterra A. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron69(5),988–1001 (2011).
    • 31  Li G, Bauer S, Nowak M et al. Cytokines and epilepsy. Seizure20(3),249–256 (2011).
    • 32  Lai AY, Swayze RD, EL-Husseini A, Song C. Interleukin-1β modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J. Neuroimmunol.175(1–2),97–106 (2006).
    • 33  Zhang R, Sun L, Hayashi Y et al. Acute p38-mediated inhibition of NMDA-induced outward currents in hippocampal CA1 neurons by interleukin-1β. Neurobiol. Dis.38(1),68–77 (2010).
    • 34  Zhang R, Yamada J, Hayashi Y, Wu Z, Koyama S, Nakanishi H. Inhibition of NMDA-induced outward currents by interleukin-1β in hippocampal neurons. Biochem. Biophys. Res. Commun.372(4),816–820 (2008).
    • 35  Butler MP, O’Connor JJ, Moynagh PN. Dissection of tumor-necrosis factor-α inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early- but not late-phase LTP. Neuroscience124(2),319–326 (2004).
    • 36  Cumiskey D, Butler MP, Moynagh PN, O’Connor JJ. Evidence for a role for the group I metabotropic glutamate receptor in the inhibitory effect of tumor necrosis factor-α on long-term potentiation. Brain Res.1136(1),13–19 (2007).
    • 37  Tancredi V, D’Arcangelo G, Grassi F et al. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci. Lett.146(2),176–178 (1992).
    • 38  Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M. Interleukin-1β inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur. J. Pharmacol.181(3),323–326 (1990).
    • 39  Bellinger FP, Madamba S, Siggins GR. Interleukin 1β inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res.628(1–2),227–234 (1993).
    • 40  Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ. Interleukin-1β (IL-1β) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci. Lett.203(1),17–20 (1996).
    • 41  Hellstrom IC, Danik M, Luheshi GN, Williams S. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-β-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus15(5),656–664 (2005).
    • 42  Coan EJ, Irving AJ, Collingridge GL. Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett.105(1–2),205–210 (1989).
    • 43  Vereker E, O’Donnell E, Lynch MA. The inhibitory effect of interleukin-1β on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J. Neurosci.20(18),6811–6819 (2000).
    • 44  Barry CE, Nolan Y, Clarke RM, Lynch A, Lynch MA. Activation of c-Jun-N-terminal kinase is critical in mediating lipopolysaccharide-induced changes in the rat hippocampus. J. Neurochem.93(1),221–231 (2005).
    • 45  Hu NW, Ondrejcak T, Rowan MJ. Glutamate receptors in preclinical research on Alzheimer’s disease: update on recent advances. Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2011.04.013 (2011) (Epub ahead of print).▪ Detailed review summarizing recent studies on the earliest glutamatergic alterations in preclinical AD.
    • 46  Jolas T, Zhang XS, Zhang Q et al. Long-term potentiation is increased in the CA1 area of the hippocampus of APPswe/ind CRND8 mice. Neurobiol. Dis.11(3),394–409 (2002).
    • 47  Schmid AW, Lynch MA, Herron CE. The effects of IL-1 receptor antagonist on β amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus19(7),670–676 (2009).
    • 48  Wang Q, Wu J, Rowan MJ, Anwyl R. β-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur. J. Neurosci.22(11),2827–2832 (2005).▪▪ One of the few studies directly addressing and implicating TNF-α in long-term potentiation inhibition within the context of AD.
    • 49  Hu NW, Klyubin I, Anwyl R, Rowan MJ. GluN2B subunit-containing NMDA receptor antagonists prevent Aβ-mediated synaptic plasticity disruption in vivo. Proc. Natl Acad. Sci. USA106(48),20504–20509 (2009).
    • 50  Noebels J. A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia52(Suppl. 1.),39–46 (2011).
    • 51  Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch. Neurol.66(4),435–440 (2009).
    • 52  Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA. Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci. Lett.367(2),164–167 (2004).
    • 53  Palop JJ, Chin J, Roberson ED et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron55(5),697–711 (2007).
    • 54  Gleichmann M, Mattson MP. Alzheimer’s disease and neuronal network activity. Neuromol. Med.12(1),44–47 (2010).
    • 55  Kumar-Singh S, Dewachter I, Moechars D et al. Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol. Dis.7(1),9–22 (2000).
    • 56  Lalonde R, Dumont M, Staufenbiel M, Strazielle C. Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav. Brain Res.157(1),91–98 (2005).
    • 57  Minkeviciene R, Rheims S, Dobszay MB et al. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci.29(11),3453–3462 (2009).
    • 58  Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer’s disease amyloid β-protein and synaptic function. Neuromol. Med.12(1),13–26 (2010).
    • 59  Moult PR, Correa SA, Collingridge GL, Fitzjohn SM, Bashir ZI. Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptor-dependent long-term depression. J. Physiol.586(10),2499–2510 (2008).
    • 60  Selkoe DJ. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res.192(1),106–113 (2008).
    • 61  Moretti DV, Pievani M, Geroldi C et al. EEG markers discriminate among different subgroup of patients with mild cognitive impairment. Am. J. Alzheimers Dis. Other Demen.25(1),58–73 (2010).
    • 62  Czigler B, Csikos D, Hidasi Z et al. Quantitative EEG in early Alzheimer’s disease patients – power spectrum and complexity features. Int. J. Psychophysiol.68(1),75–80 (2008).
    • 63  Van Der Hiele K, Vein AA, Van Der Welle A et al. EEG and MRI correlates of mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging28(9),1322–1329 (2007).
    • 64  Van Deursen JA, Vuurman EF, Verhey FR, Van Kranen-Mastenbroek VH, Riedel WJ. Increased EEG γ band activity in Alzheimer’s disease and mild cognitive impairment. J. Neural Transm.115(9),1301–1311 (2008).
    • 65  Herrmann CS, Demiralp T. Human EEG γ oscillations in neuropsychiatric disorders. Clin. Neurophysiol.116(12),2719–2733 (2005).
    • 66  Goutagny R, Jackson G, Chabot J-G et al. Very early alterations of hippocampal network oscillations in transgenic TgCRND8 mouse model of Alzheimer’s disease. Presented AT: Society for Neuroscience 2010. San Diego, CA, USA, 13–17 November 2010.
    • 67  Jelic V, Johansson SE, Almkvist O et al. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol. Aging21(4),533–540 (2000).
    • 68  Vialatte FB, Dauwels J, Maurice M, Musha T, Cichocki A. Improving the specificity of EEG for diagnosing Alzheimer’s disease. Int. J. Alzheimers Dis.2011,259069 (2011).
    • 69  Palop JJ, Mucke L. Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: two faces of the same coin? Neuromol. Med.12(1),48–55 (2010).
    • 70  Colom LV. Septal networks: relevance to θ rhythm, epilepsy and Alzheimer’s disease. J. Neurochem.96(3),609–623 (2006).
    • 71  Colom LV, Garcia-Hernandez A, Castaneda MT, Perez-Cordova MG, Garrido-Sanabria ER. Septo–hippocampal networks in chronically epileptic rats: potential antiepileptic effects of θ rhythm generation. J. Neurophysiol.95(6),3645–3653 (2006).
    • 72  Licastro F, Chiappelli M, Ruscica M, Carnelli V, Corsi MM. Altered cytokine and acute phase response protein levels in the blood of children with Downs syndrome: relationship with dementia of Alzheimer’s type. Int. J. Immunopathol. Pharmacol.18(1),165–172 (2005).
    • 73  Tan ZS, Beiser AS, Vasan RS et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham study. Neurology68(22),1902–1908 (2007).
    • 74  Breitner JC, Baker LD, Montine TJ et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement.7(4),402–411 (2011).
    • 75  Heneka MT, Sastre M, Dumitrescu-Ozimek L et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APPV717I transgenic mice. J. Neuroinflammation2,22 (2005).
    • 76  Janelsins MC, Mastrangelo MA, Oddo S, Laferla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-α and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J. Neuroinflammation2,23 (2005).
    • 77  Ma K, Mount HT, McLaurin J. Region-specific distribution of β-amyloid peptide and cytokine expression in TgCRND8 mice. Neurosci. Lett.492(1),5–10 (2011).
    • 78  Cavanagh C, Krantic S, Goutagny R et al. Increased hippocampal sensitivity to epileptiform activity in one month old TgCRND8 mice: correlation with the level of bCTF expression. Presented AT: 10th International Conference on Alzheimer’s and Parkinson’s Disease. Barcelona, Spain, 9–13 March 2011.
    • 79  Yoshiyama Y. [Neurodegeneration and inflammation: analysis of a FTDP-17 model mouse]. Rinsho Shinkeigaku48(11),910–912 (2008).
    • 80  Heurtaux T, Michelucci A, Losciuto S et al. Microglial activation depends on β-amyloid conformation: role of the formylpeptide receptor 2. J. Neurochem.114(2),576–586 (2010).
    • 81  Chang KA, Suh YH. Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the β-amyloid precursor protein in Alzheimer’s disease. J. Pharmacol. Sci.97(4),461–471 (2005).
    • 82  Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-γ and interleukin-1β or tumor necrosis factor α on the synthesis of Aβ1–40 and Aβ1–42 by human astrocytes. Neurobiol. Dis.7(6 Pt B),682–689 (2000).
    • 83  Yamamoto M, Kiyota T, Horiba M et al. Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am. J. Pathol.170(2),680–692 (2007).
    • 84  Buchhave P, Zetterberg H, Blennow K, Minthon L, Janciauskiene S, Hansson O. Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol. Aging31(11),1877–1884 (2010).
    • 85  Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J. Biol. Chem.279(47),49523–49532 (2004).▪ Demonstrates how certain cytokines can contribute to increased AD pathology by increasing the production of amyloid-β. Higher levels of amyloid-β would lead to increased release of cytokines, creating a vicious feed-forward cycle.
    • 86  Lahiri DK, Chen D, Vivien D, Ge YW, Greig NH, Rogers JT. Role of cytokines in the gene expression of amyloid β-protein precursor: identification of a 5´-UTR-binding nuclear factor and its implications in Alzheimer’s disease. J. Alzheimers Dis.5(2),81–90 (2003).
    • 87  Jacobsen JS, Wu CC, Redwine JM et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA103(13),5161–5166 (2006).
    • 88  Rammes G, Hasenjager A, Sroka-Saidi K, Deussing JM, Parsons CG. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology60(6),982–990 (2011).
    • 89  Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci.24(13),3370–3378 (2004).
    • 90  Mcalpine FE, Lee JK, Harms AS et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis.34(1),163–177 (2009).▪▪ Demonstrates the involvement of TNF signaling in the development of early AD pathology.
    • 91  Shi JQ, Shen W, Chen J et al. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res.1368,239–247 (2010).
    • 92  Chavant F, Deguil J, Pain S et al. Imipramine, in part through tumor necrosis factor α inhibition, prevents cognitive decline and β-amyloid accumulation in a mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther.332(2),505–514 (2010).
    • 93  Morihara T, Teter B, Yang F et al. Ibuprofen suppresses interleukin-1β induction of pro-amyloidogenic α1-antichymotrypsin to ameliorate β-amyloid (Aβ) pathology in Alzheimer’s models. Neuropsychopharmacology30(6),1111–1120 (2005).
    • 94  Giuliani F, Vernay A, Leuba G, Schenk F. Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-α metabolism. Brain Res. Bull.80(4–5),302–308 (2009).
    • 95  Schroeder T. Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell6(3),203–207 (2010).
    • 96  Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol. Rev.91(2),461–553 (2011).
    • 97  Mucke L, Sanchez P, Yu G-Q, Palop J, Cisse M, Verret L. Mechanisms and treatment of neuronal dysfunction in models of Alzheimer’s disease. Presented AT: International Conference on Alzheimer’s Disease 2011. Paris, France, 16–21 July 2011.
    • 98  Frankola KA, Greig NH, Luo W, Tweedie D. Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol. Disord. Drug Targets10(3),391–403 (2011).
    • 99  Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J. Neuroinflammation5,2 (2008).
    • 100  Tobinick E, Gross H, Weinberger A, Cohen H. TNF-α modulation for treatment of Alzheimer’s disease: a 6-month pilot study. Med. Gen. Med.8(2),25 (2006).
    • 101  Griffin WS. Perispinal etanercept: potential as an Alzheimer therapeutic. J. Neuroinflammation5,3 (2008).
    • 102  Munoz L, Ralay Ranaivo H, Roy SM et al. A novel p38 α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model. J. Neuroinflammation4,21 (2007).
    • 103  Tang W, Lu Y, Tian QY et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science332(6028),478–484 (2011).
    • 104  Bossu P, Salani F, Alberici A et al. Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J. Neuroinflammation8,65 (2011).
    • 105  Baker M, Mackenzie IR, Pickering-Brown SM et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature442(7105),916–919 (2006).
    • 106  Wee Yong V. Inflammation in neurological disorders: a help or a hindrance? Neuroscientist16(4),408–420 (2010).
    • 107  Weldon DT, Rogers SD, Ghilardi JR et al. Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci.18(6),2161–2173 (1998).
    • 108  Zalevsky J, Secher T, Ezhevsky SA et al. Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J. Immunol.179(3),1872–1883 (2007).
    • 109  Scheinfeld N. A comprehensive review and evaluation of the side effects of the tumor necrosis factor α blockers etanercept, infliximab and adalimumab. J. Dermatolog. Treat.15(5),280–294 (2004).
    • 110  Montgomery SL, Bowers WJ. Tumor necrosis factor-α and the roles it plays in homeostatic and degenerative processes within the central nervous system. J. Neuroimmune Pharmacol. doi: 10.1007/s11481-011-9287-2 (2011) (Epub ahead of print).
    • 111  Tobinick E. Perispinal etanercept produces rapid improvement in primary progressive aphasia: identification of a novel, rapidly reversible TNF-mediated pathophysiologic mechanism. Medscape J. Med.10(6),135 (2008).
    • 112  Golde TE, Schneider LS, Koo EH. Anti-αβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron69(2),203–213 (2011).