We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Sarcomeric α-actinins and their role in human muscle disease

    Peter J Houweling

    Institute for Neuroscience & Muscle Research, The Children’s Hospital at Westmead, Sydney 2145, NSW, Australia.

    &
    Kathryn N North

    † Author for correspondence

    Institute for Neuroscience & Muscle Research, The Children’s Hospital at Westmead, Sydney 2145, NSW, Australia and Discipline of Paediatrics & Child Health, Faculty of Medicine, University of Sydney, Sydney 2006, NSW, Australia.

    Published Online:https://doi.org/10.2217/fnl.09.60

    In skeletal muscle, the sarcomeric α-actinins (α-actinin-2 and -3) are a major component of the Z-line and crosslink actin thin filaments to maintain the structure of the sarcomere. Based on their known protein binding partners, the sarcomeric α-actinins are likely to have a number of structural, signaling and metabolic roles in skeletal muscle. In addition, the α-actinins interact with many proteins responsible for inherited muscle disorders. In this paper, we explore the role of the sarcomeric α-actinins in normal skeletal muscle and in the pathogenesis of a range of neuromuscular disorders.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Blanchard A, Ohanian V, Critchley D: The structure and function of α-actinin. J. Muscle Res. Cell. Motil.10,280–289 (1989).
    • North KN, Yang N, Wattanasirichaigoon D et al.: A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat. Genet.21,353–354 (1999).▪▪ First report of a common mutation in α-actinin-3 ( ACTN3) in the general population.
    • Noegel A, Witke W, Schleicher M: Calcium-sensitive non-muscle α-actinin contains EF-hand structures and highly conserved regions. FEBS Lett.221,391–396 (1987).
    • Fyrberg E, Kelly M, Ball E et al.: Molecular genetics of Drosophila α-actinin: mutant alleles disrupt Z disc integrity and muscle insertions. J. Cell Biol.110,1999–2011 (1990).
    • Barstead RJ, Kleiman L, Waterston RH: Cloning, sequencing, and mapping of an α-actinin gene from the nematode Caenorhabditis elegans. Cell Motil. Cytoskeleton20,69–78 (1991).
    • Arimura C, Suzuki T, Yanagisawa M et al.: Primary structure of chicken skeletal muscle and fibroblast α-actinins deduced from cDNA sequences. Eur. J. Biochem.177,649–655 (1988).
    • Beggs AH, Byers TJ, Knoll JH et al.: Cloning and characterization of two human skeletal muscle α-actinin genes located on chromosomes 1 and 11. J. Biol. Chem.267,9281–9288 (1992).
    • MacArthur DG, North KN: A gene for speed? The evolution and function of α-actinin-3. Bioessays26,786–795 (2004).▪▪ Comprehensive review of the evolution and role of α-actinin-3 in humans.
    • Honda K, Yamada T, Endo R et al.: Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell Biol.140,1383–1393 (1998).
    • 10  Krakhmaleva IN, Shishkin SS, Shakhovskaia NI et al.: NP-detecting DNA technologies: solving problems of applied biochemistry. Prikl Biokhim. Mikrobiol.41,303–307 (2005).
    • 11  Mills M, Yang N, Weinberger R et al.: Differential expression of the actin-binding proteins, α-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum. Mol. Genet.10,1335–1346 (2001).▪ Detailed analysis of the expression of sarcomeric α-actinins.
    • 12  Southby J, Gooding C, Smith CW: Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of α-actinin mutally exclusive exons. Mol. Cell Biol.19,2699–2711 (1999).
    • 13  Mukhina S, Wang YL, Murata-Hori M: α-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev. Cell13,554–565 (2007).
    • 14  Otey CA, Carpen O: α-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton58,104–111 (2004).
    • 15  Ehler E, Gautel M: The sarcomere and sarcomerogenesis. Adv. Exp. Med. Biol.642,1–14 (2008).
    • 16  North KN, Beggs AH: Deficiency of a skeletal muscle isoform of α-actinin (α-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscul. Disord.6,229–235 (1996).▪ First report of a mutation in ACTN3 not associated with a disease phenotype.
    • 17  Sjoblom B, Salmazo A, Djinovic-Carugo K: α-actinin structure and regulation. Cell. Mol. Life Sci.65,2688–2701 (2008).
    • 18  Kuhlman PA, Ellis J, Critchley DR et al.: The kinetics of the interaction between the actin-binding domain of α-actinin and F-actin. FEBS Lett.339,297–301 (1994).
    • 19  Salmikangas P, Mykkanen OM, Gronholm M et al.: Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum. Mol. Genet.8,1329–1336 (1999).
    • 20  Ohtsuka H, Yajima H, Maruyama K et al.: Binding of the N-terminal 63 kDa portion of connectin/titin to α-actinin as revealed by the yeast two-hybrid system. FEBS Lett.401,65–67 (1997).
    • 21  Nave R, Furst DO, Weber K: Interaction of α-actinin and nebulin in vitro. Support for the existence of a fourth filament system in skeletal muscle. FEBS Lett.269,163–166 (1990).
    • 22  Hance JE, Fu SY, Watkins SC et al.: α-actinin-2 is a new component of the dystrophin-glycoprotein complex. Arch. Biochem. Biophys.365,216–222 (1999).
    • 23  Otey CA, Pavalko FM, Burridge K: An interaction between α-actinin and the β1 integrin subunit in vitro. J. Cell Biol.111,721–729 (1990).
    • 24  Ervasti JM, Campbell KP: Membrane organization of the dystrophin–glycoprotein complex. Cell66,1121–1131 (1991).
    • 25  Watkins SC, Cullen MJ, Hoffman EP et al.: Plasma membrane cytoskeleton of muscle: a fine structural analysis. Microsc Res Tech48,131–141 (2000).
    • 26  Endo T, Masaki T: Differential expression and distribution of chicken skeletal- and smooth-muscle-type α-actinins during myogenesis in culture. J. Cell Biol.99,2322–2332 (1984).
    • 27  Goffart S, Franko A, Clemen CS et al.: α-actinin 4 and BAT1 interaction with the cytochrome c promoter upon skeletal muscle differentiation. Curr. Genet.49,125–135 (2006).
    • 28  Argov Z, Yarom R: Rimmed vacuole myopathy sparing the quadriceps. A unique disorder in Iranian Jews. J. Neurol. Sci.64,33–43 (1984).
    • 29  Eisenberg I, Avidan N, Potikha T et al.: The UDP- N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet.29,83–87 (2001).
    • 30  Amsili S, Zer H, Hinderlich S et al.: UDP- N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to α-actinin 1: novel pathways in skeletal muscle? PLoS ONE3,E2477 (2008).
    • 31  Malicdan MC, Noguchi S, Hayashi YK et al.: Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat. Med.15,690–695 (2009).
    • 32  Keppler OT, Hinderlich S, Langner J et al.: UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science284,1372–1376 (1999).
    • 33  Kaplan JM, Kim SH, North KN et al.: Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet.24,251–256 (2000).
    • 34  Weins A, Kenlan P, Herbert S et al.: Mutational and biological analysis of α-actinin-4 in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol.16,3694–3701 (2005).
    • 35  Kos CH, Le TC, Sinha S et al.: Mice deficient in α-actinin-4 have severe glomerular disease. J. Clin. Invest.111,1683–1690 (2003).
    • 36  Yao J, Le TC, Kos CH et al.: α-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol2,E167 (2004).
    • 37  Menez J, Le Maux Chansac B, Dorothee G et al.: Mutant α-actinin-4 promotes tumorigenicity and regulates cell motility of a human lung carcinoma. Oncogene23,2630–2639 (2004).
    • 38  Dec GW, Fuster V: Idiopathic dilated cardiomyopathy. N. Engl. J. Med.331,1564–1575 (1994).
    • 39  Kamisago M, Sharma SD, DePalma SR et al.: Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med.343,1688–1696 (2000).▪ Mutation in ACTN2 resulting in cardiomyopathy.
    • 40  Chang AN, Potter JD: Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail. Rev.10,225–235 (2005).
    • 41  Mohapatra B, Jimenez S, Lin JH et al.: Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab.80,207–215 (2003).
    • 42  Sadler I, Crawford AW, Michelsen JW et al.: Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J. Cell Biol.119,1573–1587 (1992).
    • 43  Nix DA, Beckerle MC: Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol.138,1139–1147 (1997).
    • 44  Dubreuil RR: Structure and evolution of the actin crosslinking proteins. Bioessays13,219–226 (1991).
    • 45  Roulier EM, Fyrberg C, Fyrberg E: Perturbations of Drosophila α-actinin cause muscle paralysis, weakness, and atrophy but do not confer obvious nonmuscle phenotypes. J. Cell Biol.116,911–922 (1992).
    • 46  Macarthur DG, Seto JT, Chan S et al.: An Actn3 knockout mouse provides mechanistic insights into the association between α-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet.17(8),1076–1086 (2008).
    • 47  MacArthur DG, Seto JT, Raftery JM et al.: Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat. Genet.39,1261–1265 (2007).▪  ACTN3-knockout mouse phenotype and evolutionary data.
    • 48  Nowak KJ, Wattanasirichaigoon D, Goebel HH et al.: Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet.23,208–212 (1999).
    • 49  Jennekens FG, Roord JJ, Veldman H et al.: Congenital nemaline myopathy. I. Defective organization of α-actinin is restricted to muscle. Muscle Nerve6,61–68 (1983).
    • 50  Ryan MM, Ilkovski B, Strickland CD et al.: Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology60,665–673 (2003).
    • 51  Ryan MM, Schnell C, Strickland CD et al.: Nemaline myopathy: a clinical study of 143 cases. Ann. Neurol.50,312–320 (2001).
    • 52  North K: Congenital myopathies. In: Myology. Engel A, Franzini-Armstrong C (Eds). McGraw Hill, NY, USA, 1473–1534 (2004).
    • 53  Domazetovska A, Ilkovski B, Cooper ST et al.: Mechanisms underlying intranuclear rod formation. Brain130,3275–3284 (2007).
    • 54  Lin Z, Hijikata T, Zhang Z et al.: Dispensability of the actin-binding site and spectrin repeats for targeting sarcomeric α-actinin into maturing Z bands in vivo: implications for in vitro binding studies. Dev. Biol.199,291–308 (1998).
    • 55  Schultheiss T, Choi J, Lin ZX et al.: A sarcomeric α-actinin truncated at the carboxyl end induces the breakdown of stress fibers in PtK2 cells and the formation of nemaline-like bodies and breakdown of myofibrils in myotubes. Proc. Natl Acad. Sci. USA89,9282–9286 (1992).
    • 56  Zhang ZQ, Bish LT, Holtzer H et al.: Sarcomeric-α-actinin defective in vinculin-binding causes Z-line expansion and nemaline-like body formation in cultured chick myotubes. Exp. Cell Res.315,748–759 (2009).▪ Possible role of defective α-actinin binding in nemaline myopathy pathogenesis.
    • 57  Goebel HH, Warlo I: Nemaline myopathy with intranuclear rods – intranuclear rod myopathy. Neuromuscul. Disord.7,13–19 (1997).
    • 58  Hutchinson DO, Charlton A, Laing NG et al.: Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscul. Disord.16,113–121 (2006).
    • 59  Agrawal PB, Strickland CD, Midgett C et al.: Heterogeneity of nemaline myopathy cases with skeletal muscle a-actin gene mutations. Ann. Neurol.56,86–96 (2004).
    • 60  Sparrow JC, Nowak KJ, Durling HJ et al.: Muscle disease caused by mutations in the skeletal muscle α-actin gene ( ACTA1). Neuromuscul. Disord.13,519–531 (2003).
    • 61  North KN, Laing NG: Skeletal muscle α-actin diseases. Adv. Exp. Med. Biol.642,15–27 (2008).
    • 62  Young KG, Kothary R: Spectrin repeat proteins in the nucleus. Bioessays27,144–152 (2005).
    • 63  Domazetovska A, Ilkovski B, Kumar V et al.: Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann. Neurol.62,597–608 (2007).
    • 64  Goldfarb LG, Park KY, Cervenakova L et al.: Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat. Genet.19,402–403 (1998).
    • 65  Vicart P, Caron A, Guicheney P et al.: A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet.20,92–95 (1998).
    • 66  Vorgerd M, van der Ven PF, Bruchertseifer V et al.: A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am. J. Hum. Genet.77,297–304 (2005).
    • 67  Quinzii CM, Vu TH, Min KC et al.: X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am. J. Hum. Genet.82,208–213 (2008).
    • 68  Selcen D, Engel AG: Mutations in myotilin cause myofibrillar myopathy. Neurology62,1363–1371 (2004).
    • 69  Selcen D, Engel AG: Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol.57,269–276 (2005).
    • 70  Selcen D, Muntoni F, Burton BK et al.: Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol.65,83–89 (2009).
    • 71  Claeys KG, van der Ven PF, Behin A et al.: Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. Acta Neuropathol117,293–307 (2009).▪ Recent review on the role of sarcomeric proteins in myofibrillar myopathies.
    • 72  Selcen D: Myofibrillar myopathies. Curr. Opin. Neurol.21,585–589 (2008).
    • 73  Nakano S, Engel AG, Akiguchi I et al.: Myofibrillar myopathy. III. Abnormal expression of cyclin-dependent kinases and nuclear proteins. J. Neuropathol. Exp. Neurol.56,850–856 (1997).
    • 74  Reimann J, Kunz WS, Vielhaber S et al.: Mitochondrial dysfunction in myofibrillar myopathy. Neuropathol. Appl. Neurobiol.29,45–51 (2003).
    • 75  Schroder R, Goudeau B, Simon MC et al.: On noxious desmin: functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria. Hum. Mol. Genet.12,657–669 (2003).
    • 76  Milner DJ, Mavroidis M, Weisleder N et al.: Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol.150,1283–1298 (2000).
    • 77  Selcen D, Ohno K, Engel AG: Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain127,439–451 (2004).
    • 78  Claeys KG, Fardeau M, Schroder R et al.: Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul. Disord.18,656–666 (2008).
    • 79  Selcen D, Engel AG: Myofibrillar myopathy. In: Myology. Engel A, Franzini-Armstrong C (Eds). McGraw Hill, NY, USA 1187–1202 (2004).
    • 80  Hauser MA, Horrigan SK, Salmikangas P et al.: Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol. Genet.9,2141–2147 (2000).
    • 81  Salmikangas P, van der Ven PF, Lalowski M et al.: Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Mol. Genet.12,189–203 (2003).▪ Sarcomeric α-actinin associated with myotilin.
    • 82  Yang N, MacArthur DG, Gulbin JP et al.: ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet.73,627–631 (2003).▪▪ First report of α-actinin-3-null polymorphism (R577X) influencing muscle performance in elite Australian athletes.
    • 83  Druzhevskaya AM, Ahmetov, II, Astratenkova IV et al.: Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur. J. Appl. Physiol.103,631–634 (2008).
    • 84  Niemi AK, Majamaa K: Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet.13,965–969 (2005).
    • 85  Papadimitriou ID, Papadopoulos C, Kouvatsi A et al.: The ACTN3 gene in elite Greek track and field athletes. Int. J. Sports Med.29,352–355 (2008).
    • 86  Roth SM, Walsh S, Liu D et al.: The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur. J. Hum. Genet.16,391–394 (2008).
    • 87  Santiago C, Gonzalez-Freire M, Serratosa L et al.: ACTN3 genotype in professional soccer players. Br. J. Sports Med.42,71–73 (2008).
    • 88  Eynon N, Duarte JA, Oliveira J et al.: ACTN3 R577X polymorphism and Israeli top-level athletes. Int. J. Sports Med. (2009).
    • 89  Clarkson PM, Hoffman EP, Zambraski E et al.: ACTN3 and MLCK genotype associations with exertional muscle damage. J. Appl. Physiol.99,564–569 (2005).
    • 90  Moran CN, Yang N, Bailey ME et al.: Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur. J. Hum. Genet.15,88–93 (2007).
    • 91  Clarkson PM, Devaney JM, Gordish-Dressman H et al.: ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol.99,154–163 (2005).
    • 92  Delmonico MJ, Kostek MC, Doldo NA et al.: α-actinin-3 ( ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J. Gerontol. A Biol. Sci. Med. Sci.62,206–212 (2007).
    • 93  Vincent B, De Bock K, Ramaekers M et al.: The ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol. Genomics32(1),58–63 (2007).
    • 94  MacArthur DG, North KN: ACTN3: a genetic influence on muscle function and athletic performance. Exerc. Sport Sci. Rev.35,30–34 (2007).
    • 95  Chan S, Seto JT, MacArthur DG et al.: A gene for speed: contractile properties of isolated whole EDL muscle from an α-actinin-3 knockout mouse. Am. J. Physiol. Cell Physiol.295,C897–C904 (2008).
    • 96  Lucia A, Gomez-Gallego F, Santiago C et al.: The 577X allele of the ACTN3 gene is associated with improved exercise capacity in women with McArdle’s disease. Neuromuscul. Disord.17,603–610 (2007).▪ First report of ACTN3 genotype influencing disease severity in the metabolic disorder McArdle’s disease.
    • 97  Tsujino S, Shanske S, DiMauro S: Molecular genetic heterogeneity of myophosphorylase deficiency (McArdle’s disease). N. Engl. J. Med.329,241–245 (1993).
    • 98  Li HH, Kedar V, Zhang C et al.: Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J. Clin. Invest.114,1058–1071 (2004).
    • 99  Papa I, Astier C, Kwiatek O et al.: α actinin-CapZ, an anchoring complex for thin filaments in Z-line. J. Muscle Res. Cell. Motil.20,187–197 (1999).
    • 100  Rakus D, Pasek M, Krotkiewski H et al.: Interaction between muscle aldolase and muscle fructose 1,6-bisphosphatase results in the substrate channeling. Biochemistry43,14948–14957 (2004).
    • 101  Gizak A, Rakus D, Dzugaj A: Immunohistochemical localization of human fructose-1,6-bisphosphatase in subcellular structures of myocytes. Histol. Histopathol.18,135–142 (2003).
    • 102  Chowrashi P, Mittal B, Sanger JM et al.: Amorphin is phosphorylase; phosphorylase is an α-actinin-binding protein. Cell Motil. Cytoskeleton53,125–135 (2002).
    • 103  Lane RD, Hegazy MG, Reimann EM: Subcellular localization of glycogen synthase with monoclonal antibodies. Biochem. Int.18,961–970 (1989).
    • 104  Shibasaki F, Fukami K, Fukui Y et al.: Phosphatidylinositol 3-kinase binds to α-actinin through the p85 subunit. Biochem. J.302(Pt 2),551–557 (1994).
    • 105  Pashmforoush M, Pomies P, Peterson KL et al.: Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat. Med.7,591–597 (2001).
    • 106  Au Y, Atkinson RA, Guerrini R et al.: Solution structure of ZASP PDZ domain; implications for sarcomere ultrastructure and enigma family redundancy. Structure12,611–622 (2004).
    • 107  Faulkner G, Pallavicini A, Formentin E et al.: ZASP: a new Z-band alternatively spliced PDZ-motif protein. J. Cell Biol.146,465–475 (1999).
    • 108  Frey N, Olson EN: Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J. Biol. Chem.277,13998–14004 (2002).
    • 109  Frey N, Richardson JA, Olson EN: Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl Acad. Sci. USA97,14632–14637 (2000).
    • 110  Sadeghi A, Doyle AD, Johnson BD: Regulation of the cardiac L-type Ca2+ channel by the actin-binding proteins α-actinin and dystrophin. Am. J. Physiol. Cell Physiol.282,C1502–C1511 (2002).
    • 111  Maruoka ND, Steele DF, Au BP et al.: α-actinin-2 couples to cardiac Kv1.5 channels, regulating current density and channel localization in HEK cells. FEBS Lett.473,188–194 (2000).
    • 112  Cukovic D, Lu GW, Wible B et al.: A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of α-actinin-2. FEBS Lett.498,87–92 (2001).
    • 113  Wyszynski M, Lin J, Rao A et al.: Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature385,439–442 (1997).
    • 114  Freeman JL, Pitcher JA, Li X et al.: α-actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Lett.473,280–284 (2000).
    • 115  Park JB, Kim JH, Kim Y et al.: Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner. J. Biol. Chem.275,21295–21301 (2000).
    • 116  Mukai H, Toshimori M, Shibata H et al.: Interaction of PKN with α-actinin. J. Biol. Chem.272,4740–6 (1997).
    • 117  Arber S, Halder G, Caroni P: Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell79,221–231 (1994).
    • 118  Crawford AW, Michelsen JW, Beckerle MC: An interaction between zyxin and α-actinin. J. Cell Biol.116,1381–1393 (1992).