We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Drug susceptibility testing of nontuberculous mycobacteria

    Jakko van Ingen

    *Author for correspondence:

    E-mail Address: jakko.vaningen@radboudumc.nl

    Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500HB Nijmegen, The Netherlands

    &
    Ed J Kuijper

    Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands

    Published Online:https://doi.org/10.2217/fmb.14.60

    ABSTRACT 

    Diseases caused by nontuberculous mycobacteria are emerging in many settings. With an increased number of patients needing treatment, the role of drug susceptibility testing is again in the spotlight. This articles covers the history and methodology of drug susceptibility tests for nontuberculous mycobacteria, but focuses on the correlations between in vitro drug susceptibility, pharmacokinetics and in vivo outcomes of treatment. Among slow-growing nontuberculous mycobacteria, clear correlations have been established for macrolides and amikacin (Mycobacterium avium complex) and for rifampicin (Mycobacterium kansasii). Among rapid-growing mycobacteria, correlations have been established in extrapulmonary disease for aminoglycosides, cefoxitin and co-trimoxazole. In pulmonary disease, correlations are less clear and outcomes of treatment are generally poor, especially for Mycobacterium abscessus. The clinical significance of inducible resistance to macrolides among rapid growers is an important topic. The true role of drug susceptibility testing for nontuberculous mycobacteria still needs to be addressed, preferably within clinical trials.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Marras TK, Chedore P, Ying AM, Jamieson F. Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003. Thorax 62, 661–666 (2007).
    • 2 Thomson RM. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg. Infect. Dis. 16, 1576–1583 (2010).
    • 3 Falkinham JO 3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 107, 356–367 (2009).
    • 4 Griffith DE, Aksamit T, Brown–Elliot BA et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175, 367–416 (2007).•• Essential statement for all diagnostic and treatment decisions.
    • 5 van Ingen J, Ferro BE, Hoefsloot W, Boeree MJ, van Soolingen D. Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: the evidence. Expert Rev. Anti Infect. Ther. 11, 1065–1077 (2013).
    • 6 Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin. Infect. Dis. 52, 565–571 (2011).•• Retrospective study that shows the limited in vitro–in vivo correlations in Mycobacterium abscessus lung disease.
    • 7 van Ingen J. Nontuberculous mycobacteria: from gene sequences to clinical relevance [PhD thesis]. Radboud University Nijmegen, The Netherlands (2009). http://webdoc.ubn.ru.nl/mono/i/ingen_j_van/nontmy.pdf.
    • 8 Canetti G, Froman S, Grosset J et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 29, 565–578 (1963).
    • 9 Runyon EH. Anonymous mycobacteria in pulmonary disease. Med. Clin. North Am. 43, 273–290 (1959).
    • 10 Middlebrook G, Cohn ML. Bacteriology of tuberculosis: laboratory methods. Am. J. Public Health Nations Health 48, 844–853 (1958).
    • 11 van Ingen J, van der Laan T, Dekhuijzen PNR, Boeree MJ, van Soolingen D. In vitro drug susceptibility of 2275 clinical nontuberculous Mycobacterium isolates of 49 species in The Netherlands. Int. J. Antimicrob. Agents 35, 169–173 (2010).
    • 12 van Ingen J, Boeree M, van Soolingen D, Mouton J. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updat. 15, 149–161 (2012).
    • 13 Research Committee of the British Thoracic Society. First randomised trial of treatments for pulmonary disease caused by M. avium intracellulare, M. malmoense, and M. xenopi in HIV negative patients: rifampicin, ethambutol and isoniazid versus rifampicin and ethambutol. Thorax 56, 167–172 (2001).
    • 14 Ericsson HM, Sherris JC. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 217 Suppl: 211 (1971).
    • 15 Swenson JM, Thornsberry C, Silcox VA. Rapidly growing mycobacteria: testing of susceptibility to 34 antimicrobial agents by broth microdilution. Antimicrob. Agents Chemother. 22, 186–192 (1982).
    • 16 Swenson JM, Wallace RJ Jr, Silcox VA, Thornsberry C. Antimicrobial susceptibility of five subgroups of Mycobacterium fortuitum and Mycobacterium chelonae. Antimicrob. Agents Chemother. 28, 807–811 (1985).
    • 17 Wallace RJ Jr, Nash DR, Steele LC, Steingrube V. Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth. J. Clin. Microbiol. 24, 976–981 (1986).
    • 18 Woods GL, Williams–Bouyer N, Wallace RJ Jr et al. Multisite reproducibility of results obtained by two broth dilution methods for susceptibility testing of Mycobacterium avium complex. J. Clin. Microbiol. 41, 627–631 (2003).
    • 19 Snider DE Jr, Good RC, Kilburn JO et al. Rapid drug–susceptibility testing of Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 123, 402–406 (1981).
    • 20 Heifets LB, Iseman MD, Lindholm-Levy PJ. Determination of MICs of conventional and experimental drugs in liquid medium by the radiometric method against Mycobacterium avium complex. Drugs Exp. Clin. Res. 13, 529–538 (1987).
    • 21 Hoffner SE, Svenson SB, Kallenius G. Synergistic effects of antimycobacterial drug combinations on Mycobacterium avium complex determined radiometrically in liquid medium. Eur. J. Clin. Microbiol. 6, 530–535 (1987).
    • 22 Hansen KT, Clark RB, Sanders WE. Effects of different test conditions on the susceptibility of Mycobacterium fortuitum and Mycobacterium chelonae to amikacin. J. Antimicrob. Chemother. 33, 483–494 (1994).
    • 23 Yew WW, Piddock LJ, Li MS, Lyon D, Chan CY, Cheng AF. In-vitro activity of quinolones and macrolides against mycobacteria. J. Antimicrob. Chemother. 34, 343–351 (1994).
    • 24 Clinical Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes (CLSI document M24-A2) (2nd Ed.). Clinical Standards Institute, PA, USA (2011).
    • 25 Drobniewski F, Rusch-Gerdes S, Hoffner S. Antimicrobial susceptibility testing of Mycobacterium tuberculosis (EUCAST document E.DEF 8.1) – report of the Subcommittee on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Clin. Microbiol. Infect. 13, 1144–1156 (2007).
    • 26 Piersimoni C, Nista D, Bornigia S, De Sio G. Evaluation of a new method for rapid drug susceptibility testing of Mycobacterium avium complex isolates by using the mycobacteria growth indicator tube. J. Clin. Microbiol. 36, 64–67 (1998).
    • 27 Flynn CM, Kelley CM, Barrett MS, Jones RN. Application of the Etest to the antimicrobial susceptibility testing of Mycobacterium marinum clinical isolates. J. Clin. Microbiol. 35, 2083–2086 (1997).
    • 28 Fabry W, Schmid EN, Ansorg R. Comparison of the E test and a proportion dilution method for susceptibility testing of Mycobacterium kansasii. Chemotherapy 41, 247–252 (1995).
    • 29 Fabry W, Schmid EN, Ansorg R. Comparison of the E test and a proportion dilution method for susceptibility testing of Mycobacterium avium complex. J. Med. Microbiol. 44, 227–230 (1996).
    • 30 Hoffner SE, Klintz L, Olsson-Liljequist B, Bolmstrom A. Evaluation of Etest for rapid susceptibility testing of Mycobacterium chelonae and M. fortuitum. J. Clin. Microbiol. 32, 1846–1849 (1994).
    • 31 Werngren J, Olsson-Liljequist B, Gezelius L, Hoffner SE. Antimicrobial susceptibility of Mycobacterium marinum determined by E–test and agar dilution. Scand. J. Infect. Dis. 33, 585–588 (2001).
    • 32 Woods GL, Bergmann JS, Witebsky FG et al. Multisite reproducibility of Etest for susceptibility testing of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum. J. Clin. Microbiol. 38, 656–661 (2000).
    • 33 Klein JL, Brown TJ, French GL. Rifampin resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob. Agents Chemother. 45, 3056–3058 (2001).
    • 34 Meier A, Heifets L, Wallace RJ Jr et al. Molecular mechanisms of clarithromycin resistance in Mycobacterium avium: observation of multiple 23S rDNA mutations in a clonal population. J. Infect. Dis. 174, 354–360 (1996).
    • 35 Nash KA, Inderlied CB. Rapid detection of mutations associated with macrolide resistance in Mycobacterium avium complex. Antimicrob. Agents Chemother. 40, 1748–1750 (1996).
    • 36 Wallace RJ Jr, Meier A, Brown BA et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob. Agents Chemother. 40, 1676–1681 (1996).
    • 37 Bastian S, Veziris N, Roux AL et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob. Agents Chemother. 55, 775–781 (2011).• Important study for the understanding of inducible macrolide resistance in rapid growers.
    • 38 Goldman KP. Treatment of unclassified mycobacterial infection of the lungs. Thorax 23, 94–99 (1968).
    • 39 Chaisson RE, Benson CA, Dube MP et al. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease. A randomized, double–blind, dose–ranging study in patients with AIDS. AIDS Clinical Trials Group Protocol 157 Study Team. Ann. Intern. Med. 121, 905–911 (1994).
    • 40 Sison JP, Yao Y, Kemper CA et al. Treatment of Mycobacterium avium complex infection: do the results of in vitro susceptibility tests predict therapeutic outcome in humans? J. Infect. Dis. 173, 677–683 (1996).
    • 41 Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex: the first 50 patients. Am. J. Respir. Crit. Care Med. 153, 1766–1772 (1996).
    • 42 Tanaka E, Kimoto T, Tsuyuguchi K et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am. J. Respir. Crit. Care Med. 160, 866–872 (1999).• First trial to clearly show that macrolide resistance in vitro is associated with clinical failure in vivo.
    • 43 Research Committee of the British Thoracic Society. Clarithromycin vs ciprofloxacin as adjuncts to rifampicin and ethambutol in treating opportunist mycobacterial lung diseases and an assessment of Mycobacterium vaccae immunotherapy. Thorax 63, 627–634 (2008).
    • 44 Brown-Elliott BA, Iakhiaeva E, Griffith DE et al. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J. Clin. Microbiol. 51, 3389–3394 (2013).•• Important contribution towards meaningful susceptibility testing to amikacin.
    • 45 Kobashi Y, Matsushima T, Oka M. A double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir. Med. 101, 130–138 (2007).
    • 46 Kuze F, Kurasawa T, Bando K, Lee Y, Maekawa N. In vitro and in vivo susceptibility of atypical mycobacteria to various drugs. Rev. Infect. Dis. 3, 885–897 (1981).
    • 47 Kuze F. Experimental chemotherapy in chronic Mycobacterium avium-intracellulare infection of mice. Am. Rev. Respir. Dis. 129, 453–459 (1984).
    • 48 Ahn CH, Lowell JR, Ahn SS, Ahn SI, Hurst GA. Short-course chemotherapy for pulmonary disease caused by Mycobacterium kansasii. Am. Rev. Respir. Dis. 128, 1048–1050 (1983).
    • 49 Ahn CH, Wallace RJ Jr, Steele LC, Murphy DT. Sulfonamide-containing regimens for disease caused by rifampin-resistant Mycobacterium kansasii. Am. Rev. Respir. Dis. 135, 10–16 (1987).
    • 50 Wallace RJ Jr, Dunbar D, Brown BA et al. Rifampin-resistant Mycobacterium kansasii. Clin. Infect. Dis. 18, 736–743 (1994).
    • 51 Shitrit D, Baum GL, Priess R et al. Pulmonary Mycobacterium kansasii infection in Israel, 1999–2004: clinical features, drug susceptibility, and outcome. Chest 129, 771–776 (2006).
    • 52 van Ingen J, Totten SE, Heifets LB, Boeree MJ, Daley CL. Drug susceptibility testing and pharmacokinetics question current treatment regimens in Mycobacterium simiae complex disease. Int. J. Antimicrob. Agents 39, 173–176 (2012).
    • 53 Wallace RJ, Swenson JM, Silcox VA, Bulen MG. Treatment of nonpulmonary infections due to Mycobacterium fortuitum and Mycobacterium chelonei on the basis of in vitro susceptibilities. J. Infect. Dis. 152, 500–514 (1985).•• Landmark study that reveals associations between in vitro susceptibility and outcomes of treatment in vivo for extrapulmonary disease caused by rapid-growing nontuberculous mycobacteria.
    • 54 Jeon K, Kwon OJ, Lee NY et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am. J. Respir. Crit. Care Med. 180, 896–902 (2009).
    • 55 Koh WJ, Jeon K, Lee NY et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am. J. Respir. Crit. Care Med. 183, 405–410 (2011).
    • 56 Aubry A, Chosidow O, Caumes E, Robert J, Cambau E. Sixty-three cases of Mycobacterium marinum infection: clinical features, treatment, and antibiotic susceptibility of causative isolates. Arch. Intern. Med. 162, 1746–1752 (2002).
    • 57 Ljungberg B, Christensson B, Grubb R. Failure of doxycycline treatment in aquarium-associated Mycobacterium marinum infections. Scand. J. Infect. Dis. 19, 539–543 (1987).
    • 58 Inderlied CB, Young LS, Yamada JK. Determination of in vitro susceptibility of Mycobacterium avium complex isolates to antimycobacterial agents by various methods. Antimicrob. Agents Chemother. 31, 1697–1702 (1987).
    • 59 Woods GL, Witebsky FG. Susceptibility testing of Mycobacterium avium complex in clinical laboratories. Results of a questionnaire and proficiency test performance by participants in the College of American Pathologists Mycobacteriology E Survey. Arch. Pathol. Lab. Med. 120, 436–439 (1996).
    • 60 Krishnan MY, Manning EJ, Collins MT. Comparison of three methods for susceptibility testing of Mycobacterium avium subsp. paratuberculosis to 11 antimicrobial drugs. J. Antimicrob. Chemother. 64, 310–316 (2009).
    • 61 Marone P, Bono L, Carretto E, Barbarini D, Telecco S. Rapid drug susceptibility of Mycobacterium avium complex using a fluorescence quenching method. J. Chemother. 9, 247–250 (1997).
    • 62 Lucke K, Hombach M, Friedel U, Ritter C, Böttger EC. Automated quantitative drug susceptibility testing of non-tuberculous mycobacteria using MGIT 960/EpiCenter TB eXiST. J. Antimicrob. Chemother. 67, 154–158 (2012).
    • 63 Aubry A, Jarlier V, Escolano S, Truffot-Pernot C, Cambau E. Antibiotic susceptibility pattern of Mycobacterium marinum. Antimicrob. Agents Chemother. 44, 3133–3136 (2000).
    • 64 Mouton JW, Brown DF, Apfalter P et al. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin. Microbiol. Infect. 18, E37–E45 (2011).
    • 65 van Ingen J, Egelund EF, Levin A et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am. J. Respir. Crit. Care Med. 186, 559–565 (2012).•• Largest pharmacokinetic study in nontuberculous mycobacteria disease to date, including commonly used and rare drugs related to MIC data.
    • 66 Koh WJ, Jeong BH, Jeon K, Lee SY, Shin SJ. Therapeutic drug monitoring in the treatment of Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 186, 797–802 (2012).
    • 67 Magis-Escurra C, Alffenaar JW, Hoefnagels I et al. Pharmacokinetic studies in patients with nontuberculous mycobacterial lung infections. Int. J. Antimicrob. Agents 42, 256–261 (2013).
    • 68 van Ingen J, Boeree MJ, van Soolingen D, Iseman MD, Heifets LB, Daley CL. Are phylogenetic position, virulence, drug susceptibility and in vivo response to treatment in mycobacteria interrelated? Infect. Gen. Evol. 12, 832–837 (2012).
    • 69 Silva PE, Bigi F, Santangelo MP et al. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 45, 800–804 (2001).
    • 70 Ainsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J. Bacteriol. 180, 5836–5843 (1998).
    • 71 Ramon-Garcia S, Martin C, Ainsa JA, De Rossi E. Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum. J. Antimicrob. Chemother. 57, 252–259 (2006).
    • 72 De Rossi E, Blokpoel MC, Cantoni R et al. Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob. Agents Chemother. 42, 1931–1937 (1998).
    • 73 Sander P, De Rossi E, Boddinghaus B et al. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiol. Lett 193, 19–23 (2000).
    • 74 Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 48, 2415–2423 (2004).
    • 75 Rodrigues L, Aínsa JA, Amaral L, Viveiros M. Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat. Antiinfect. Drug Discov. 6, 118–127 (2011).
    • 76 Griffith DE, Brown-Elliott BA, Langsjoen B et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 174, 928–934 (2006).
    • 77 Prammananan T, Sander P, Brown BA et al. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J. Infect. Dis. 177, 1573–1581 (1998).
    • 78 Picardeau M, Vincent V. Characterization of large linear plasmids in mycobacteria. J. Bacteriol. 179, 2753–2756 (1997).
    • 79 Stinear TP, Seemann T, Harrison PF et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res. 18, 729–741 (2008).
    • 80 Matsumoto CK, Bispo PJ, Santin K, Nogueira CL, Leão SC. Demonstration of plasmid-mediated drug resistance in Mycobacterium abscessus. J. Clin. Microbiol. 26, 1727–1729 (2014).
    • 81 Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob. Agents Chemother. 50, 3476–3478 (2006).
    • 82 Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 53, 1367–1376 (2009).
    • 83 Donald PR, Diacon AH. The early bactericidal activity of anti-tuberculosis drugs: a literature review. Tuberculosis 88 (Suppl. 1), S75–S83 (2008).
    • 84 van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow growing nontuberculous mycobacteria is currently of questionable clinical significance. Int. J. Antimicrob. Agents 42, 80–82 (2013).
    • 85 Hoffner SE, Heurlin N, Petrini B, Svenson SB, Kallenius G. Mycobacterium avium complex develop resistance to synergistically active drug combinations during infection. Eur. Respir. J. 7, 247–250 (1994).
    • 86 Deshpande D, Srivastava S, Meek C, Leff R, Gumbo T. Ethambutol optimal clinical dose and susceptibility breakpoint identification by use of a novel pharmacokinetic–pharmacodynamic model of disseminated intracellular Mycobacterium avium. Antimicrob. Agents Chemother. 54, 1728–1733 (2010).
    • 87 van Ingen J, Aarnoutse RE, Donald PR et al. Why do we use 600mg of rifampicin in tuberculosis treatment? Clin. Infect. Dis. 52, e194–e199 (2011).
    • 88 Diacon, AH, Patientia, RF, Venter, A et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob. Agents Chemother. 51, 2994–2996 (2007).
    • 89 Shojaei H, Daley C, Gitti Z et al. Mycobacterium iranicum sp. nov., a rapidly growing scotochromogenic species isolated from clinical specimens on three different continents. Int. J. Syst. Evol. Microbiol. 63, 1383–1389 (2013).
    • 90 Mullis SN, Falkinham JO 3rd. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J. Appl. Microbiol. 115, 908–914 (2013).
    • 91 Antunes AL, Trentin DS, Bonfanti JW et al. Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci. APMIS 118, 873–877 (2010).
    • 92 Houben D, Demangel C, van Ingen J. et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol. 14, 1287–1298 (2012).
    • 93 Lerat I, Cambau E, Roth Dit Bettoni R et al. In vivo evaluation of antibiotic activity against Mycobacterium abscessus. J. Infect. Dis. 209, 905–912 (2014).
    • 94 Wolinsky E. Chemotherapy and pathology of experimental photochromogenic mycobacterial infections. Am. Rev. Respir. Dis. 80, 522–534 (1959).