We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.11.20

In trypanosomes, all RNAs are processed by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common spliced leader (SL) is donated to all mRNAs from a small RNA molecule, the SL RNA. This article summarizes recent findings in the field focusing on SL RNA transcription, cap modifications and pseudouridylation. The role(s) of these modifications for splicing and gene expression are discussed. The recruitment of SL RNA to the spliceosome depends on splicing factors and recent progress in identifying such factors is described. A recent major advance in understanding the role of trans-splicing in the trypanosome transcriptome was obtained by whole-genome mapping of the SL and polyadenylation sites, revealing surprising heterogeneity and suggesting that gene regulation, especially during cycling between the two hosts of the parasite, involves alternative trans-splicing. Finally, the SL silencing mechanism, which is harnessed by the parasite to control gene expression under stress, is discussed.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Ivens AC, Peacock CS, Worthey EA et al.: The genome of the kinetoplastid parasite, Leishmania major.Science309(5733),436–442 (2005).
  • Mair G, Shi H, Li H et al.: A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA6(2),163–169 (2000).
  • Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA: Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res.38(15),4946–4957 (2010).▪ Genome-wide spliced leader (SL) and polyadenylation sites.
  • Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C: The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog.6(9),pii: E1001090 (2010).▪ Second genome-wide analysis of SL and polyadenyaltion sites that also determined the initiation sites of the primary polycistronic transcripts.
  • Boothroyd JC, Cross GA: Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5´ end. Gene20(2),281–289 (1982).
  • Agabian N: Trans splicing of nuclear pre-mRNAs. Cell61(7),1157–1160 (1990).
  • Liang XH, Haritan A, Uliel S, Michaeli S: trans and cis splicing in Trypanosomatids: mechanism, factors, and regulation. Eukaryot. Cell2(5),830–840 (2003).
  • Sutton RE, Boothroyd JC: Evidence for trans splicing in trypanosomes. Cell47(4),527–535 (1986).
  • Murphy WJ, Watkins KP, Agabian N: Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell47(4),517–525 (1986).
  • 10  Krause M, Hirsh D: A trans-spliced leader sequence on actin mRNA in C. elegans.Cell49(6),753–761 (1987).
  • 11  Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P: Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena.EMBO J.10(9),2621–2625 (1991).
  • 12  Rajkovic A, Davis RE, Simonsen JN, Rottman FM: A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni.Proc. Natl Acad. Sci. USA87(22),8879–8883 (1990).
  • 13  Vandenberghe AE, Meedel TH, Hastings KE: mRNA 5´-leader trans-splicing in the chordates. Genes Dev.15(3),294–303 (2001).
  • 14  Zhang H, Hou Y, Miranda L et al.: Spliced leader RNA trans-splicing in dinoflagellates. Proc. Natl Acad. Sci. USA104(11),4618–4623 (2007).
  • 15  Mandelboim M, Estraño CL, Tschudi C, Ullu E, Michaeli S: On the role of exon and intron sequences in trans-splicing utilization and cap 4 modification of the trypanosomatid Leptomonas collosoma SL RNA. J. Biol. Chem.277(38),35210–35218 (2002).
  • 16  Lücke S, Xu GL, Palfi Z, Cross M, Bellofatto V, Bindereif A: Spliced leader RNA of trypanosomes: in vivo mutational analysis reveals extensive and distinct requirements for trans splicing and cap4 formation. EMBO J.15(16),4380–4391 (1996).
  • 17  Sturm NR, Yu MC, Campbell DA: Transcription termination and 3´-end processing of the spliced leader RNA in kinetoplastids. Mol. Cell Biol.19(2),1595–1604 (1999).
  • 18  Mottram J, Perry KL, Lizardi PM, Lührmann R, Agabian N, Nelson RG: Isolation and sequence of four small nuclear U RNA genes of Trypanosoma brucei subsp. brucei: identification of the U2, U4, and U6 RNA analogs. Mol. Cell Biol.9(3),1212–1223 (1989).
  • 19  Tschudi C, Williams SP, Ullu E: Conserved sequences in the U2 snRNA-encoding genes of Kinetoplastida do not include the putative branchpoint recognition region. Gene91(1),71–77 (1990).
  • 20  Djikeng A, Ferreira L, D’angelo M et al.: Characterization of a candidate Trypanosoma brucei U1 small nuclear RNA gene. Mol. Biochem. Parasitol.113(1),109–115 (2001).
  • 21  Dungan JM, Watkins KP, Agabian N: Evidence for the presence of a small U5-like RNA in active trans-spliceosomes of Trypanosoma brucei.EMBO J.15(15),4016–4029 (1996).
  • 22  Xu YX, Benshlomo H, Michaeli S: The U5 RNA of trypanosomes deviates from the canonical U5 RNA: the Leptomonas collosoma U5 RNA and its coding gene. Proc. Natl Acad. Sci. USA94(16),8473–8478 (1997).
  • 23  Xu Y, Liu L, Michaeli S: Functional analyses of positions across the 5´ splice site of the trypanosomatid spliced leader RNA. Implications for base-pair interaction with U5 and U6 snRNAs. J. Biol. Chem.275(36),27883–27892 (2000).
  • 24  Hannon GJ, Maroney PA, Yu YT, Hannon GE, Nilsen TW: Interaction of U6 snRNA with a sequence required for function of the nematode SL RNA in trans-splicing. Science258(5089),1775–1780 (1992).
  • 25  Günzl A: The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot. Cell9(8),1159–1170 (2010).
  • 26  Wang P, Palfi Z, Preusser C et al.: Sm core variation in spliceosomal small nuclear ribonucleoproteins from Trypanosoma bruceiEMBO J.25(19),4513–4523 (2006).
  • 27  Tkacz ID, Lustig Y, Stern Mz et al.: Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and U4 snRNAs in Trypanosoma brucei.RNA13(1),30–43 (2007).
  • 28  Jae N, Wang P, Gu T et al.: Essential role of a trypanosome U4-specific Sm core protein in small nuclear ribonucleoprotein assembly and splicing. Eukaryot. Cell9(3),379–386 (2010).
  • 29  Shaked H, Wachtel C, Tulinski P et al.: Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA. Nucleic Acids Res.38(10),E114 (2010).▪ First in vitro trans-splicing system.
  • 30  Nilsson D, Gunasekera K, Mani J et al.: Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei.PLoS Pathog6(8), pii, E1001037 (2010).▪ Genome-wide analysis on the SL addition sites across the developmental cycle of the parasite suggesting alternative trans-splicing events as a regulatory mechanism during parasite development.
  • 31  Siegel TN, Hekstra DR, Kemp Le et al.: Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei.Genes Dev.23(9),1063–1076 (2009).
  • 32  Gilinger G, Bellofatto V: Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promoter in these organisms. Nucleic Acids Res.29(7),1556–1564 (2001).▪ Demonstrated the structure of the SL RNA promoter.
  • 33  Günzl A, Ullu E, Dorner M et al.: Transcription of the Trypanosoma brucei spliced leader RNA gene is dependent only on the presence of upstream regulatory elements. Mol. Biochem. Parasitol.85(1),67–76 (1997).
  • 34  Hartree D, Bellofatto V: Essential components of the mini-exon gene promoter in the trypanosomatid Leptomonas seymouri.Mol. Biochem. Parasitol.71(1),27–39 (1995).
  • 35  Yu MC, Sturm NR, Saito RM, Roberts TG, Campbell DA: Single nucleotide resolution of promoter activity and protein binding for the Leishmania tarentolae spliced leader RNA gene. Mol. Biochem. Parasitol.94(2),265–281 (1998).
  • 36  Luo H, Gilinger G, Mukherjee D, Bellofatto V: Transcription initiation at the TATA-less spliced leader RNA gene promoter requires at least two DNA-binding proteins and a tripartite architecture that includes an initiator element. J. Biol. Chem.274(45),31947–31954 (1999).
  • 37  Schimanski B, Nguyen TN, Günzl A: Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei.Mol. Cell Biol.25(16),7303–7313 (2005).
  • 38  Das A, Zhang Q, Palenchar JB, Chatterjee B, Cross GA, Bellofatto V: Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Mol. Cell Biol.25(16),7314–7322 (2005).
  • 39  Das A, Banday M, Bellofatto V: RNA polymerase transcription machinery in trypanosomes. Eukaryot. Cell7(3),429–434 (2008).
  • 40  Palenchar JB, Liu W, Palenchar PM, Bellofatto V: A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. Eukaryot. Cell5(2),293–300 (2006).
  • 41  Schimanski B, Brandenburg J, Nguyen TN, Caimano MJ, Günzl A: A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei.Nucleic Acids Res.34(6),1676–1684 (2006).
  • 42  Lee JH, Nguyen TN, Schimanski B, Gunzl A: Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH. Eukaryot. Cell6(4),641–649 (2007).
  • 43  Lecordier L, Devaux S, Uzureau P et al.: Characterization of a TFIIH homologue from Trypanosoma brucei.Mol. Microbiol.64(5),1164–1181 (2007).
  • 44  Lee JH, Jung HS, Günzl A: Transcriptionally active TFIIH of the early-diverged eukaryote Trypanosoma brucei harbors two novel core subunits but not a cyclin-activating kinase complex. Nucleic Acids Res.37(11),3811–3820 (2009).
  • 45  Lee JH, Cai G, Panigrahi AK et al.: A TFIIH-associated mediator head is a basal factor of small nuclear spliced leader RNA gene transcription in early-diverged trypanosomes. Mol. Cell Biol.30(23),5502–5513 (2010).
  • 46  Reddy R, Singh R, Shimba S: Methylated cap structures in eukaryotic RNAs: structure, synthesis and functions. Pharmacol. Ther.54(3),249–267 (1992).
  • 47  Bangs JD, Crain PF, Hashizume T, Mccloskey Ja, Boothroyd JC: Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J. Biol. Chem.267(14),9805–9815 (1992).
  • 48  Mair G, Ullu E, Tschudi C: Cotranscriptional cap 4 formation on the Trypanosoma brucei spliced leader RNA. J. Biol. Chem.275(37),28994–28999 (2000).
  • 49  Takagi Y, Sindkar S, Ekonomidis D, Hall MP, Ho CK: Trypanosoma brucei encodes a bifunctional capping enzyme essential for cap 4 formation on the spliced leader RNA. J. Biol. Chem.282(22),15995–16005 (2007).
  • 50  Ruan JP, Shen S, Ullu E, Tschudi C: Evidence for a capping enzyme with specificity for the trypanosome spliced leader RNA. Mol. Biochem. Parasitol.156(2),246–254 (2007).
  • 51  Zamudio JR, Mittra B, Foldynova-Trantirkova S et al.: The 2´-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei.Mol. Cell Biol.27(17),6084–6092 (2007).▪ Demonstrates the role of ‘cap4’ nucleotides.
  • 52  Mittra B, Zamudio JR, Bujnicki Jm et al.: The TbMTr1 spliced leader RNA cap 1 2’-O-ribose methyltransferase from Trypanosoma brucei acts with substrate specificity. J. Biol. Chem.283(6),3161–3172 (2008).
  • 53  Liang XH, Xu YX, Michaeli S: The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. RNA8(2),237–246 (2002).
  • 54  Zamudio JR, Mittra B, Chattopadhyay A, Wohlschlegel JA, Sturm NR, Campbell DA: Trypanosoma brucei spliced leader RNA maturation by the cap 1 2´-O-ribose methyltransferase and SLA1 H/ACA snoRNA pseudouridine synthase complex. Mol. Cell Biol.29(5),1202–1211 (2009).
  • 55  Tycowski KT, Shu MD, Kukoyi A, Steitz JA: A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol. Cell34(1),47–57 (2009).
  • 56  Zamudio JR, Mittra B, Zeiner GM et al.: Complete cap 4 formation is not required for viability in Trypanosoma brucei.Eukaryot. Cell5(6),905–915 (2006).
  • 57  Arhin GK, Ullu E, Tschudi C: 2´-O-methylation of position 2 of the trypanosome spliced leader cap 4 is mediated by a 48 kDa protein related to vaccinia virus VP39. Mol. Biochem. Parasitol.147(1),137–139 (2006).
  • 58  Hall MP, HO CK: Functional characterization of a 48 kDa Trypanosoma brucei cap 2 RNA methyltransferase. Nucleic Acids Res.34(19),5594–5602 (2006).
  • 59  Arhin GK, Li H, Ullu E, Tschudi C: A protein related to the vaccinia virus cap-specific methyltransferase VP39 is involved in cap 4 modification in Trypanosoma brucei.RNA12(1),53–62 (2006).
  • 60  Zamudio JR, Mittra B, Campbell Da, Sturm NR: Hypermethylated cap 4 maximizes Trypanosoma brucei translation. Mol. Microbiol.72(5),1100–1110 (2009).
  • 61  Yoffe Y, Zuberek J, Lerer A et al.: Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania.Eukaryot. Cell5(12),1969–1979 (2006).
  • 62  Li H, Tschudi C: Novel and essential subunits in the 300-kilodalton nuclear cap binding complex of Trypanosoma brucei.Mol. Cell Biol.25(6),2216–2226 (2005).
  • 63  Dossin FM, Schenkman S: Actively transcribing RNA polymerase II concentrates on spliced leader genes in the nucleus of Trypanosoma cruzi.Eukaryot. Cell4(5),960–970 (2005).
  • 64  Hitchcock RA, Thomas S, Campbell DA, Sturm NR: The promoter and transcribed regions of the Leishmania tarentolae spliced leader RNA gene array are devoid of nucleosomes. BMC Microbiol.7,44 (2007).
  • 65  Uzureau P, Daniels JP, Walgraffe D et al.: Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations. Mol. Microbiol.69(5),1121–1136 (2008).
  • 66  Biton M, Mandelboim M, Arvatz G, Michaeli S: RNAi interference of XPO1 and Sm genes and their effect on the spliced leader RNA in Trypanosoma brucei.Mol. Biochem. Parasitol.150(2),132–143 (2006).
  • 67  Hury A, Goldshmidt H, Tkacz ID, Michaeli S: Trypanosome spliced-leader-associated RNA (SLA1) localization and implications for spliced-leader RNA biogenesis. Eukaryot. Cell8(1),56–68 (2009).
  • 68  Tkacz ID, Gupta SK, Volkov V et al.: Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing. J. Biol. Chem.285(36),27982–27999 (2010).▪ Observes for the first time the role of U1 snRNP protein in cis- and trans-splicing as well as in polyadenylation.
  • 69  Mandelboim M, Barth S, Biton M, Liang XH, Michaeli S: Silencing of Sm proteins in Trypanosoma brucei by RNA interference captured a novel cytoplasmic intermediate in spliced leader RNA biogenesis. J. Biol. Chem.278(51),51469–51478 (2003).
  • 70  Zeiner GM, Sturm NR, Campbell DA: Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. Eukaryot. Cell2(2),222–230 (2003).
  • 71  Zeiner GM, Foldynova S, Sturm NR, Lukes J, Campbell DA: SmD1 is required for spliced leader RNA biogenesis. Eukaryot. Cell3(1),241–244 (2004).
  • 72  Zeiner GM, Hitchcock RA, Sturm NR, Campbell DA: 3´-End polishing of the kinetoplastid spliced leader RNA is performed by SNIP, a 3´-->5´ exonuclease with a Motley assortment of small RNA substrates. Mol. Cell Biol.24(23),10390–10396 (2004).
  • 73  Palfi Z, Jae N, Preusser C et al.: SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev.23(14),1650–1664 (2009).
  • 74  Battle DJ, Kasim M, Yong J et al.: The SMN complex: an assembly machine for RNPs. Cold Spring Harb. Symp. Quant. Biol.71,313–320 (2006).
  • 75  Jae N, Engstler M, Michaeli S, Bindereif A: snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo.RNA Biol. (2010) (Epub ahead of print).
  • 76  Sturm NR, Yu MC, Campbell DA: Transcription termination and 3’-End processing of the spliced leader RNA in kinetoplastids. Mol. Cell Biol.19(2),1595–1604 (1999).
  • 77  Ullu E, Tschudi C: 2´-O-methyl RNA oligonucleotides identify two functional elements in the trypanosome spliced leader ribonucleoprotein particle. J. Biol. Chem.268(18),13068–13073 (1993).
  • 78  Harris KA Jr, Crothers DM, Ullu E: In vivo structural analysis of spliced leader RNAs in Trypanosoma brucei and Leptomonas collosoma: a flexible structure that is independent of cap4 methylations. RNA1(4),351–362 (1995).
  • 79  Barth S, Hury A, Liang XH, Michaeli S: Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J. Biol. Chem.280(41),34558–34568 (2005).
  • 80  Liu Q, Liang XH, Uliel S, Belahcen M, Unger R, Michaeli S: Identification and functional characterization of Lsm proteins in Trypanosoma brucei.J. Biol. Chem.279,18210–18219 (2004).
  • 81  Tkacz ID, Cohen S, Salmon-Divon M, Michaeli S: Identification of the heptameric Lsm complex that binds U6 snRNA in Trypanosoma brucei.Mol. Biochem. Parasitol.160(1),22–31 (2008).
  • 82  Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Seraphin B: SM and SM-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J.18(12),3451–3462 (1999).
  • 83  Bouveret E, Rigaut G, Shevchenko A, Wilm M, Seraphin B: A Sm-like protein complex that participates in mRNA degradation. EMBO J.19(7),1661–1671 (2000).
  • 84  Luz Ambrósio D, Lee JH, Panigrahi AK, Nguyen TN, Cicarelli RM, Günzl A: Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors. Eukaryot. Cell8(7),990–1000 (2009).
  • 85  Chan SP, Kao DI, Tsai WY, Cheng SC: The Prp19p-associated complex in spliceosome activation. Science302(5643),279–282 (2003).
  • 86  Denker JA, Zuckerman DM, Maroney PA, Nilsen TW: New components of the spliced leader RNP required for nematode trans-splicing. Nature417(6889),667–670 (2002).
  • 87  Liang XH, Liu Q, Liu L, Tschudi C, Michaeli S: Analysis of spliceosomal complexes in Trypanosoma brucei and silencing of two splicing factors Prp31 and Prp43. Mol. Biochem. Parasitol.145(1),29–39 (2006).
  • 88  Palfi Z, Schimanski B, Günzl A, Lücke S, Bindereif A: U1 small nuclear RNP from Trypanosoma brucei: a minimal U1 snRNA with unusual protein components. Nucleic Acids Res.33(8),2493–2503 (2005).
  • 89  Ullu E, Matthews KR, Tschudi C: Temporal order of RNA-processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts. Mol. Cell Biol.13(1),720–725 (1993).
  • 90  Vassella E, Braun R, Roditi I: Control of polyadenylation and alternative splicing of transcripts from adjacent genes in a procyclin expression site: a dual role for polypyrimidine tracts in trypanosomes? Nucleic Acids Res.22(8),1359–1364 (1994).
  • 91  Lebowitz JH, Smith HQ, Rusche L, Beverley SM: Coupling of poly(A) site selection and trans-splicing in Leishmania.Genes Dev.7(6),996–1007 (1993).
  • 92  Vazquez MP, Mualem D, Bercovich N et al.: Functional characterization and protein-protein interactions of trypanosome splicing factors U2AF35, U2AF65 and SF1. Mol. Biochem. Parasitol.164(2),137–146 (2009).
  • 93  Zorio DA, Blumenthal T: Both subunits of U2AF recognize the 3’ splice site in Caenorhabditis elegans.Nature402(6763),835–838 (1999).
  • 94  Vazquez M, Atorrasagasti C, Bercovich N, Volcovich R, Levin MJ: Unique features of the Trypanosoma cruzi U2AF35 splicing factor. Mol. Biochem. Parasitol.128(1),77–81 (2003).
  • 95  Stern MZ, Gupta SK, Salmon-Divon M et al.: Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA15(4),648–665 (2009).
  • 96  Matthews KR, Tschudi C, Ullu E: A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev.8(4),491–501 (1994).▪ Demonstrates the link between trans-splicing and polyadenylation.
  • 97  Schurch N, Hehl A, Vassella E, Braun R, Roditi I: Accurate polyadenylation of procyclin mRNAs in Trypanosoma brucei is determined by pyrimidine-rich elements in the intergenic regions. Mol. Cell Biol.14(6),3668–3675 (1994).
  • 98  Siegel TN, Tan KS, Cross GA: Systematic study of sequence motifs for RNA trans splicing in Trypanosoma brucei.Mol. Cell Biol.25(21),9586–9594 (2005).
  • 99  Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G: Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res.18(1),88–103 (2008).
  • 100  Kol G, Lev-Maor G, Ast G: Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum. Mol. Genet.14(11),1559–1568 (2005).
  • 101  Lustig Y, Sheiner L, Vagima Y et al.: Spliced-leader RNA silencing: a novel stress-induced mechanism in Trypanosoma brucei.EMBO Rep.8(4),408–413 (2007).▪ Reports the SL RNA silencing pathway pathway for the first time.
  • 102  Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S: Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei.PLoS Pathog.6(1),E1000731 (2010).▪ Demonstrates that SL RNA silencing pathway is a programmed cell death process.
  • 103  Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y: An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem.277(37),34287–34294 (2002).
  • 104  Rao RV, Ellerby HM, Bredesen DE: Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ.11(4),372–380 (2004).
  • 105  Lin JH, Li H, Zhang Y, Ron D, Walter P: Divergent effects of PERK and IRE1 signaling on cell viability. PLoS ONE4(1),E4170 (2009).