We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Origin of hepatitis δ virus

    John Taylor

    † Author for correspondence

    Fox Chase Cancer Center, PA 19111, USA.

    &
    Martin Pelchat

    Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.

    Published Online:https://doi.org/10.2217/fmb.10.15

    This article addresses some of the questions relating to how hepatitis δ virus (HDV), an agent so far unique in the animal world, might have arisen. HDV was discovered in patients infected with hepatitis B virus (HBV). It generally makes HBV infections more damaging to the liver. It is a subviral satellite agent that depends upon HBV envelope proteins for its assembly and ability to infect new cells. In other aspects of replication, HDV is both independent of and very different from HBV. In addition, the small single-stranded circular RNA genome of HDV, and its mechanism of replication, demonstrate an increasing number of similarities to the viroids – a large family of helper-independent subviral agents that cause pathogenesis in plants.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Rizzetto M, Canese MG, Arico J et al.: Immunofluorescence detection of a new antigen–antibody system associated to the hepatitis B virus in the liver and in the serum of HBsAg carriers. Gut18,997–1003 (1977).
    • Rizzetto M, Canese MG, Gerin JL, London WT, Sly DL, Purcell RH: Transmission of the hepatitis B virus-associated δ antigen to chimpanzees. J. Infect. Dis.141,590–602 (1980).
    • Taylor JM, Farci P, Purcell RH: Hepatitis δ (δ) virus. In: Fields Virology. Knipe DM (Ed.). Lippincott Williams & Wilkins, PA, USA, 3031–3046 (2007).
    • Radjef N, Gordien E, Ivaniushina V et al.: Molecular phylogenetic analyses indicate a wide and ancient radiation of African hepatitis δ virus, suggesting a δ virus genus of at least seven major clades. J. Virol.78,2537–2544 (2004).
    • Deny P: Hepatitis δ virus genetic variability: from genotypes I, II, III to eight major clades. In: Hepatitis δ Virus. Casey JL (Ed.). Springer, Heidelberg, Germany, 151–171 (2006).▪▪ Defines the many clades of hepatitis δ virus (HDV).
    • Casey JL, Niro GA, Engle RE et al.: Hepatitis B virus/hepatitis δ virus (HDV) coinfection in outbreaks of acute hepatitis in the Peruvian Amazon basin: the roles of HDV genotype III and HBV genotype F. J. Infect. Dis.174,920–926 (1996).
    • Seeger C, Zoulim F, Mason WS: Hepadnaviruses. In: Fields Virology. Knipe DM (Ed.). Lippincott Williams & Wilkins, PA, USA, 2977–3030 (2007).
    • Taylor JM: Replication of the hepatitis δ virus RNA genome. Adv. Vir. Res.74,102–121 (2009).▪▪ Reviews how HDV RNAs are transcribed.
    • Branch AD, Robertson HD: A replication cycle for viroids and small infectious RNAs. Science223,450–455 (1984).
    • 10  Chen P-J, Kalpana G, Goldberg J et al.: Structure and replication of the genome of hepatitis δ virus. Proc. Natl Acad. Sci. USA83,8774–8778 (1986).
    • 11  Doudna JA, Lorsch JR: Ribozyme catalysis: not different, just worse. Nat. Struct. Mol. Biol.12,395–402 (2005).
    • 12  Reid CE, Lazinski DW: A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc. Natl Acad. Sci. USA97,424–429 (2000).
    • 13  Gudima S, Wu S-Y, Chiang C-M, Moraleda G, Taylor J: Origin of the hepatitis δ virus mRNA. J. Virol.74,7204–7210 (2000).
    • 14  Hsieh S-Y, Taylor J: Regulation of polyadenylation of HDV antigenomic RNA. J. Virol.65,6438–6446 (1991).
    • 15  Chao M, Hsieh S-Y, Taylor J: Role of two forms of the hepatitis δ virus antigen: evidence for a mechanism of self-limiting genome replication. J. Virol.64,5066–5069 (1990).
    • 16  Casey JL, Gerin JL: Hepatitis δ virus RNA editing: specific modification of adenosine in the antigenomic RNA. J. Virol.69,7593–7600 (1995).
    • 17  Chang FL, Chen PJ, Tu SJ, Chiu MN, Wang CJ, Chen DS: The large form of hepatitis δ antigen is crucial for the assembly of hepatitis δ virus. Proc. Natl Acad. Sci. USA88,8490–8494 (1991).
    • 18  Bordier BB, Ohkanda J, Liu P et al.: In vivo antiviral efficacy of prenylation inhibitors against hepatitis δ virus. J. Clin. Invest.112,407–414 (2003).
    • 19  Taylor JM: Replication of human hepatitis δ virus: influence of studies on subviral plant pathogens. Adv. Virus Res.54,45–60 (1999).
    • 20  Diener TO: The viroid: biological oddity or evolutionary fossil? Adv. Virus Res.57,137–184 (2001).
    • 21  Owens RA, Hammond RW: Viroid pathogenicity: one process, many faces. Viruses1,298–316 (2009).
    • 22  Diener TO: Potato spindle tuber “virus”. IV. A replicating, low molecular weight RNA. Virology45,411–428 (1971).
    • 23  Daros J, Marcos J, Hernandez C, Flores R: Replication of avocado sunblotch viroid: Evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme procesing. Proc. Natl Acad. Sci. USA91,12813–12817 (1994).
    • 24  Wang K-S, Choo Q-L, Weiner AJ et al.: Structure, sequence and expression of the hepatitis δ viral genome. Nature323,508–513 (1986).
    • 25  Tsagris EM, Martinez de Alba AE, Gozmanova M, Kalantidis K: Viroids. Cell Microbiol.10,2168–2179 (2008).
    • 26  Tabler M, Tsagris M: Viroids: petite RNA pathogens with distinguished talents. Trends Plant Sci.9,339–348 (2004).▪▪ Reviews the many plant viroid RNAs.
    • 27  Daros JA, Elena SF, Flores R: Viroids: an Ariadne’s thread into the RNA labyrinth. EMBO Rep.7,593–598 (2006).
    • 28  Rocheleau L, Pelchat M: The Subviral RNA Database: a toolbox for viroids, the hepatitis δ virus and satellite RNAs research. BMC Microbiol.6,24 (2006).
    • 29  Flores R, Gas M-E, Molina-Serrano δ et al.: Vioroid replication: rolling-circles, enzymes and ribozymes. Viruses1,317–334 (2009).▪▪ Reviews the replication of viroids RNAs.
    • 30  Flores R, Gas ME, Molina D, Hernandez C, Daros JA: Analysis of viroid replication. Methods Mol. Biol.451,167–183 (2008).
    • 31  Branch AD, Robertson HD, Greer C, Gegenheimer P, Peebles C, Abelson J: Cell-free circularization of viroid progeny RNA by an RNA ligase from wheat germ. Science217,1147–1149 (1982).
    • 32  Elena SF, Dopazo J, Flores R, Diener TO, Moya A: Phylogeny of viroids, viroidlike satellite RNAs, and the viroid-like domain of hepatitis δ virus RNA. Proc. Natl Acad. Sci. USA88,5631–5634 (1991).
    • 33  Jenkins GM, Woelk CH, Rambaut A, Holmes EC: Testing the extent of sequence similarity among viroids, satellite RNAs, and hepatitis δ virus. J. Mol. Evol.50,98–102 (2000).
    • 34  Sikora D, Greco-Stewart VS, Miron P, Pelchat M: The hepatitis δ virus RNA genome interacts with eEF1α1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology390,71–78 (2009).
    • 35  Dube A, Bisaillon M, Perreault JP: Identification of proteins from prunus persica that interact with peach latent mosaic viroid. J. Virol.83,12057–12067 (2009).
    • 36  Schindler I-M, Muhlbach H-P: Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Sci.84,221–229 (1992).
    • 37  Li YJ, Macnaughton T, Gao L, Lai MM: RNA-templated replication of hepatitis δ virus: genomic and antigenomic RNAs associate with different nuclear bodies. J. Virol.80,6478–6486 (2006).
    • 38  Tseng C-H, Lai MMC: Hepatitis δ virus RNA replication. Viruses1,818–831 (2009).
    • 39  Tseng CH, Jeng KS, Lai MM: Transcription of subgenomic mRNA of hepatitis δ virus requires a modified hepatitis δ antigen, distinct from antigenomic RNA synthesis. J. Virol.82,9409–9416 (2008).
    • 40  Greco-Stewart VS, Pelchat M: Coercion of host cellular proteins by the hepatitis δ virus. Viruses (2010) (In press).▪ Demonstrates that all three mammalian polymerases will bind to HDV RNAs.
    • 41  Flores R, Gas M-E, Molina-Serrano δ et al.: Viroid replication: rolling-circles, enzymes, and ribozymes. Viruses1,317–334 (2009).
    • 42  Greco-Stewart VS, Miron P, Abrahem A, Pelchat M: The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis δ virus RNA genome. Virology357,68–78 (2007).
    • 43  Greco-Stewart VS, Schissel E, Pelchat M: The hepatitis δ virus RNA genome interacts with the human RNA polymerases I and III. Virology386,12–15 (2009).
    • 44  Pelchat M, Perreault JP: Binding site of Escherichia coli RNA polymerase to an RNA promoter. Biochem. Biophys. Res. Commun.319,636–642 (2004).
    • 45  Elena SF, Gomez G, Daros J-A: Evolutionary constraints to viroid evolution. Viruses1,241–254 (2009).
    • 46  Chao M: RNA recombination in hepatitis δ virus: implications regarding the abilities of mammalian RNA polymerases. Virus Res.127,208–215 (2007).
    • 47  Gudima SO, Chang J, Taylor JM: Reconstitution in cultured cells of replicating HDV RNA from pairs of less than full-length RNAs. RNA11,90–98 (2005).
    • 48  Chang J, Taylor J: In vivo RNA-directed transcription, with template switching, by a mammalian RNA polymerase. EMBO J.21,157–164 (2002).▪ Demonstrates that template switching can occur during HDV RNA transcription.
    • 49  Simon AE, Roossinck MJ, Havelda Z: Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Ann. Rev. Phytopathol.42,415–437 (2004).
    • 50  Symons RH, Randles JW: Encapsidated Circular Viroid-Like Satellite RNAs (Virusoids) of Plants. Symons RH, Randles JW (Eds). Springer-Verlag, Berlin, Germany (1999).
    • 51  Daros J, Flores R: Identification of a retroviroid-like element from plants. Proc. Natl Acad. Sci. USA92,6856–6860 (1995).
    • 52  Jones FD, Ryder SP, Strobel SA: An efficient ligation reaction promoted by a Varkud satellite ribozyme with extended 5´- and 3´-termini. Nucl. Acids Res.29,5115–5120 (2001).
    • 53  Kuiper MT, Sabourin JR, Lambowitz AM: Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J. Biol. Chem.265,6936–6943 (1990).
    • 54  Teixeira A, Tahiri-Alaoui A, West S et al.: Autocatalytic RNA cleavage in the human δ-globin pre-mRNA promotes transcription termination. Nature432,526–530 (2004).▪ Reports a ribozyme downstream of globin mRNA.
    • 55  Fong N, Ohman M, Bentley DL: Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Nat. Struct. Mol. Biol.16,916–922 (2009).▪ Demonstrates that ribozyme cleavage can regulate other RNA processing events.
    • 56  Nie X, Chang J, Taylor JM: Alternative processing of hepatitis δ virus antigenomic RNA transcripts. J. Virol.78,4517–4524 (2004).
    • 57  Brown AL, Perrotta AT, Wadkins TS, Been MD: The poly(A) site sequence in HDV RNA alters both extent and rate of self-cleavage of the antigenomic ribozyme. Nucl. Acids Res.36,2990–3000 (2008).
    • 58  Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak JW: A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science313,1788–1792 (2006).
    • 59  Webb C-HT, Riccitelli NJ, Ruminski DJ, Luptak A: Widespread occurrence of self-cleaving ribozymes. Science, 326,953 (2009).▪▪ Reports many HDV-like ribozymes.
    • 60  Dinter-Gottlieb G. Designing a ribozyme from the hepatitis δ virus. In: The Unique Hepatitis δ Virus. Dinter-Gottlieb G (Ed.). RG Landes, Co. Austin, TX, USA, 33–46 (1995).
    • 61  Nigro J, Cho K, Fearon E et al.: Scrambled exons. Cell64,607–613 (1991).
    • 62  Brazas R, Ganem D: A cellular homolog of hepatitis δ antigen: implications for viral replication and evolution. Science274,90–94 (1996).
    • 63  Brazas R, Ganem D: δ-interacting protein A and the origin of hepatitis δ antigen. Science276,824–825 (1997).
    • 64  Long M, de Souza SJ, Gilbert W: δ-interacting protein A and the origin of hepatitis δ antigen. Science276,824–825 (1997).
    • 65  Du X, Wang Q, Hirohashi Y, Greene MI: DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Exp. Mol. Pathol.81,184–190 (2006).
    • 66  Yamaguchi Y, Filipovska J, Yano K et al.: Stimulation of RNA polymerase II elongation by hepatitis δ antigen. Science293,124–127 (2001).
    • 67  van Hoof A, Parker R: The exosome: a proteosome for RNA? Cell12,347–350 (1999).
    • 68  Kuo MY-P, Goldberg J, Coates L, Mason W, Gerin J, Taylor J: Molecular cloning of hepatitis δ virus RNA from an infected woodchuck liver: sequence, structure, and applications. J. Virol.62,1855–1861 (1988).
    • 69  Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H: The hepatitis delta (δ) virus possesses a circular RNA. Nature323,558–560 (1986).
    • 70  Lazinski DW, Taylor JM: Expression of hepatitis δ virus RNA deletions: cis and trans requirements for self-cleavage, ligation, and RNA packaging. J. Virol.68,2879–2888 (1994).
    • 71  Wang H-W, Wu H-L, Chen D-S, Chen P-J: Identification of the functional regions required for hepatitis δ virus replication and transcription by linker-scanning mutagenesis of viral genome. Virology239,119–131 (1997).
    • 72  Chang J, Gudima SO, Taylor JM: Evolution of hepatitis δ virus RNA genome following long-term replication in cell culture. J. Virol.79,13310–13316 (2005).
    • 73  Ranjith-Kumar CT, Kao CC: Recombinant viral RdRps can initiate RNA synthesis from circular templates. RNA12,303–312 (2006).▪ Demonstrates that RNA polymerases can initiate transcription on circular RNAs.
    • 74  Filipovska J, Konarska MM: Specific HDV RNA-templated transcription by pol II in vitro. RNA6,41–54 (2000).
    • 75  Lehmann E, Brueckner F, Cramer P: Molecular basis of RNA-dependent RNA polymerase II activity. Nature450,445–449 (2007).
    • 76  Katze MG, Fornek JL, Palermo RE, Walters KA, Korth MJ: Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nat. Rev. Immunol.8,644–654 (2008).
    • 77  Carthew RW, Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell136,642–655 (2009).
    • 78  Maida Y, Yasukawa M, Furuuchi M et al.: An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature461,230–235 (2009).
    • 79  Zhang T, Breitbart M, Lee WH et al.: RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol.4,E3 (2006).
    • 80  Gerritzen A, Brackmann H, van Loo B et al.: Chronic δ hepatitis in haemophiliacs. J. Med. Virol.34,188–190 (1991).
    • 81  Taylor JM: Viral hepatitis d. In: Molecular Pathology of Liver Diseases. Monga P (Ed.). Springer, NY, USA (2009) (In press).
    • 101  Subviral RNA Database http://subviral.med.uottawa.ca