We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Clostridial toxins

    Michel R Popoff

    † Author for correspondence

    Institut Pasteur, Bactéries Anaérobies et Toxines, 28 rue du Dr Roux, 75724 Paris cedex 15, France.

    &
    Philippe Bouvet

    Institut Pasteur, Bactéries Anaérobies et Toxines, 28 rue du Dr Roux, 75724 Paris cedex 15, France.

    Published Online:https://doi.org/10.2217/fmb.09.72

    Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens ε-toxin and Clostridium septicum α-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.

    Bibliography

    • Brüggemann H, Bäumer S, Fricke WF et al.: The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA100,1316–1321 (2003).
    • Brüggemann H, Gottschalk G: Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe10,53–68 (2004).
    • Sebaihia M, Peck MW, Minton NP et al.: Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res.17,1082–1092 (2007).
    • Sebaihia M, Wren BW, Mullany P et al.: The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet.38,779–786 (2006).
    • Shimizu T, Ohtani K, Hirakawa H et al.: Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl Acad. Sci. USA99,996–1001 (2002).
    • Stackebrandt E, Hippe H: Taxonomy and systematics. In: Clostridia. Bahl H, Dürre P (Eds). Willey-VCH, Weinheim, Germany, 19–48 (2001).
    • Popoff MR, Stiles BG: Clostridial toxins vs. other bacterial toxins. In: Handbook of Clostridia. Dürre P (Ed.). Taylor and Francis, FL, USA, 323–383 (2005).
    • Songer JG: Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev.9,216–234 (1996).
    • Geny B, Popoff MR: Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biol. Cell98,667–678 (2006).
    • 10  Deguchi A, Miyamoto K, Kuwahara T et al.: Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS One4,e5598 (2009).
    • 11  Katayama S, Dupuy B, Cole ST: Rapid expansion of the physical and genetic map of the chromosome of Clostridium perfringens CPN50. J. Bacteriol.177,5680–5685 (1995).
    • 12  Tweten RK: Nucleotide sequence of the gene for perfringolysin O (θ toxin) from Clostridium perfringens: significant homology with the genes for streptolysin and pneumolysin. Infect. Immun.56,3235–3240 (1988).
    • 13  Alouf J: Cholesterol binding toxins (Streptococcus, Bacillus, Clostridium, Listeria). In: Guidebook to Protein Toxins and their Use in Cell Biology. Rappuoli R, Montecucco C (Eds). Sambrook & Tooze Publications, Oxford, UK, 7–10 (1997).
    • 14  Alouf JE: Molecular features of the cytolytic pore forming bacterial protein toxins. Folia Microbiol. (Praha)48,5–16 (2003).
    • 15  Tweten RK: Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect. Immun.73,6199–6209 (2005).
    • 16  Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW: Structure of a cholesterol-binding thiol-activated cytolysin and a model of its membrane form. Cell89,685–692 (1997).
    • 17  Soltani CE, Hotze EM, Johnson AE, Tweten RK: Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc. Natl Acad. Sci. USA104,20226–20231 (2007).
    • 18  Soltani CE, Hotze EM, Johnson AE, Tweten RK: Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J. Biol. Chem.282,15709–15716 (2007).
    • 19  Sekino-Suzuki N, Nakamura M, Mitsui K, Ohno-Iwashita O: Contribution of individual tryptophan residues to the structure and activity of θ-toxin (pefringolysin O), a cholesterol-binding cytolysin. Eur. J. Biochem.241,941–947 (1996).
    • 20  Waheed AA, Shimada Y, Heijnen HFG et al.: Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl Acad. Sci. USA98,4926–4931 (2001).
    • 21  Shepard L, Shatursky O, Johnson A, Tweten R: The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry39,10284–10293 (2000).
    • 22  Dang TX, Hotze EM, Rouiller I, Tweten RK, Wilson-Kubalek EM: Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy. J. Struct. Biol.150,100–108 (2005).
    • 23  Ramachandran R, Tweten RK, Johnson AE: Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat. Struct. Mol. Biol.11,697–705 (2004).
    • 24  Heuck AP, Savva CG, Holzenburg A, Johnson AE: Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol. J. Biol. Chem.282,22629–22637 (2007).
    • 25  Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW: Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J. Mol. Biol.367,1227–1236 (2007).
    • 26  Ramachandran R, Heuck AP, Tweten RK, Johnson AE: Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol.9,823–827 (2002).
    • 27  Heuck AP, Hotze EM, Tweten RK, Johnson AE: Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol. Cell6,1233–1242 (2000).
    • 28  Heuck AP, Tweten RK, Johnson AE: β-barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry40,9065–9073 (2001).
    • 29  Shatursky O, Heuck A, Shepard L et al.: The mechanism of membrane insertion of a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell99,293–299 (1999).
    • 30  Hotze EM, Heuck AP, Czajkowsky DM, Shao Z, Johnson AE, Tweten RK: Monomer–monomer interactions drive the prepore to pore conversion of a β-barrel-forming cholesterol-dependent cytolysin. J. Biol. Chem.277,11597–11605 (2002).
    • 31  Czajkowsky DM, Hotze EM, Shao Z, Tweten RK: Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J.23,3206–3215 (2004).
    • 32  Nelson LD, Johnson AE, London E: How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. J. Biol. Chem.283,4632–4642 (2008).
    • 33  Stevens DL, Tweten RK, Awad MM, Rood JI, Bryant AE: Clostridial gas gangrene: evidence that α and τ-toxin differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis.176,189–195 (1997).
    • 34  Bryant AE, Bergstrom R, Zimmerman GA et al.: Clostridium perfringens invasiveness is enhanced by effects of θ toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol. Med. Microbiol.7,321–326 (1993).
    • 35  Bryant AE, Stevens DL: Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis on cultured human umbilical vein endothelial cells. Infect. Immun.64,358–362 (1996).
    • 36  Awad MM, Ellenor DM, Bod RL, Emmins JJ, Rood JI: Synergistic effects of α-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun.69,7904–7910 (2001).
    • 37  Stevens DL, Bryant AE: The role of clostridial toxins in the pathogenesis of gas gangrene. Clin. Infect. Dis.35,S93–S100 (2002).
    • 38  Sayeed S, Fernandez-Miyakawa ME, Fisher DJ et al.: E-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model. Infect. Immun.73,7413–7421 (2005).
    • 39  Fernandez Miyakawa ME, Uzal FA: The early effects of Clostridium perfringens type D ε toxin in ligated intestinal loops of goats and sheep. Vet. Res. Commun.27,231–241 (2003).
    • 40  Losada-Eaton DM, Uzal FA, Fernandez Miyakawa ME: Clostridium perfringens ε toxin is absorbed from different intestinal segments of mice. Toxicon51,1207–1213 (2008).
    • 41  Tamai E, Ishida T, Miyata S et al.: Accumulation of Clostridium perfringens ε-toxin in the mouse kidney and its possible biological significance. Infect. Immun.71,5371–5375 (2003).
    • 42  Uzal FA, Songer JG: Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J. Vet. Diagn. Invest.20,253–265 (2008).
    • 43  Nagahama M, Sakurai J: Distribution of labeled Clostridium perfringens ε toxin in mice. Toxicon29,211–217 (1991).
    • 44  Nagahama M, Sakurai J: High-affinity binding of Clostridium perfringens ε-toxin to rat brain. Infect. Immun.60,1237–1240 (1992).
    • 45  Finnie JW: Neurological disorders produced by Clostridium perfringens type D ε toxin. Anaerobe10,145–150 (2004).
    • 46  Soler-Jover A, Dorca J, Popoff MR et al.: Distribution of Clostridium perfringens ε toxin in the brains of acutely intoxicated mice and its effect upon glial cells. Toxicon50,530–540 (2007).
    • 47  Dorca-Arevalo J, Soler-Jover A, Gibert M, Popoff MR, Martin-Satue M, Blasi J: Binding of ε-toxin from Clostridium perfringens in the nervous system. Vet. Microbiol.131,14–25 (2008).
    • 48  Finnie JW: Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D ε toxin: a review. Aust. Vet. J.81,219–221 (2003).
    • 49  Miyamoto O, Minami J, Toyoshima T et al.: Neurotoxicity of Clostridium perfringens ε-toxin for the rat hipocampus via glutamanergic system. Infect. Immun.66,2501–2508 (1998).
    • 50  Hunter SE, Clarke IN, Kelly DC, Titball RW: Cloning and nucleotide sequencing of the Clostridium perfringens ε-toxin gene and its expression in Escherichia coli.Infect. Immun.60,102–110 (1992).
    • 51  Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A: λ-toxin of Clostridium perfringens activates the precursor of ε-toxin by releasing its N- and C-terminal peptides. Microbiol. Immunol.41,527–535 (1997).
    • 52  Cole A: Structural studies on ε toxin from Clostridium perfringens. In: Protein Toxins of the Genus Clostridium and Vaccination. Duchesnes C, Mainil J, Popoff MR, Titball R (Eds). Presses de la Faculté de Médecine Vétérinaire, Liège, Belgium, 95 (2003).
    • 53  Sakurai J: Toxins of Clostridium perfringens.Rev. Med. Microbiol.6,175–185 (1995).
    • 54  Oyston PCF, Payne DW, Havard HL, Williamson ED, Titball RW: Production of a non-toxic site-directed mutant of Clostridium perfringens ε-toxin which induces protective immunity in mice. Microbiology144,333–341 (1998).
    • 55  Heine K, Pust S, Enzenmuller S, Barth H: ADP-ribosylation of actin by the Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect. Immun.76,4600–4608 (2008).
    • 56  Lindsay CD, Hambrook JL, Upshall DG: Examination of toxicity of Clostridium perfringens ε-toxin in the MDCK cell line. Toxicol. In Vitro9,213–218 (1995).
    • 57  Payne DW, Williamson ED, Havard H, Modi N, Brown J: Evaluation of a new cytotoxicity assay for Clostridium perfringens type D ε toxin. FEMS Microbiol. Lett.116,161–168 (1994).
    • 58  Petit L, Gibert M, Gillet D, Laurent-Winter C, Boquet P, Popoff MR: Clostridium perfringens ε-toxin acts on MDCK cells by forming a large membrane complex. J. Bacteriol.179,6480–6487 (1997).
    • 59  Shortt SJ, Titball RW, Lindsay CD: An assessment of the in vitro toxicology of Clostridium perfringens type D ε-toxin in human and animal cells. Hum. Exp. Toxicol.19,108–116 (2000).
    • 60  Miyata S, Matsushita O, Minami J, Katayama S, Shimamoto S, Okabe A: Cleavage of C-terminal peptide is essential for heptamerization of Clostridium perfringens ε-toxin in the synaptosomal membrane. J. Biol. Chem.276,13778–13783 (2001).
    • 61  Miyata S, Minami J, Tamai E, Matsushita O, Shimamoto S, Okabe A: Clostridium perfringens ε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin–Darby canine kidney cells and rat synaptosomes. J. Biol. Chem.277,39463–39468 (2002).
    • 62  Payne D, Williamson ED, Titball RW: The Clostridium perfringens ε-toxin. Rev. Med. Microbiol.8,S28–S30 (1997).
    • 63  Chassin C, Bens M, de Barry J et al.: Pore-forming ε toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells. Am. J. Physiol. Renal Physiol.293,F927–F937 (2007).
    • 64  Shimamoto S, Tamai E, Matsushita O, Minami J, Okabe A, Miyata S: Changes in ganglioside content affect the binding of Clostridium perfringens ε-toxin to detergent-resistant membranes of Madin–Darby canine kidney cells. Microbiol. Immunol.49,245–253 (2005).
    • 65  Nagahama M, Hara H, Fernandez-Miyakawa M, Itohayashi Y, Sakurai J: Oligomerization of Clostridium perfringens ε-toxin is dependent upon membrane fluidity in liposomes. Biochemistry45,296–302 (2006).
    • 66  Petit L, Maier E, Gibert M, Popoff MR, Benz R: Clostridium perfringens ε-toxin induces a rapid change in cell membrane permeability to ions and forms channels in artificial lipid bilayers. J. Biol. Chem.276,15736–15740 (2001).
    • 67  Petit L, Gibert M, Gourch A, Bens M, Vandewalle A, Popoff MR: Clostridium perfringens ε toxin rapidly decreases membrane barrier permeability of polarized MDCK cells. Cell. Microbiol.5,155–164 (2003).
    • 68  Buxton D: The use of an imunoperoxidase technique to investigate by light and electron microscopy the sites of binding of Clostridium welchii type D ε-toxin in mice. J. Med. Microbiol.11,289–292 (1978).
    • 69  Finnie JW, Blumbergs PC, Manavis J: Neuronal damage produced in rat brains by Clostridium perfringens type D ε-toxin. J. Comp. Path.120,415–420 (1999).
    • 70  Zhu C, Ghabriel MN, Blumbergs PC et al.: Clostridium perfringens prototoxin-induced alteration of endothelial barrier antigen (EBA) immunoreactivity at the blood brain barrier (BBB). Exp. Neurol.169,72–82 (2001).
    • 71  Miyamoto O, Sumitami K, Nakamura T et al.: Clostridium perfringens ε toxin causes excessive release of glutamate in the mouse hippocampus. FEMS Microbiol. Lett.189,109–113 (2000).
    • 72  Kennedy CL, Krejany EO, Young LF et al.: The α-toxin of Clostridium septicum is essential for virulence. Mol. Microbiol.57,1357–1366 (2005).
    • 73  Melton JA, Parker MW, Rossjohn J, Buckley JT, Tweten RK: The identification and structure of the membrane-spanning domain of the Clostridium septicum α toxin. J. Biol. Chem.279,14315–14322 (2004).
    • 74  Imagawa T, Dohi Y, Higashi Y: Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum. FEMS Microbiol. Lett.117,287–292 (1994).
    • 75  Ballard J, Crabtree J, Roe BA, Tweten RK: The primary structure of Clostridium septicum α-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect. Immun.63,340–344 (1995).
    • 76  Ballard J, Bryant A, Stevens D, Tweten RK: Purification and characterization of the lethal toxin (α-toxin) of Clostridium septicum. Infect. Immun.60,784–790 (1992).
    • 77  Melton-Witt JA, Bentsen LM, Tweten RK: Identification of functional domains of Clostridium septicum α toxin. Biochemistry45,14347–14354 (2006).
    • 78  Amimoto K, Sasaki Y, Fukuyama S, Tamura Y: Genetic variation and cross-reactivity of Clostridium septicum α-toxin. Vet. Microbiol.114,51–59 (2006).
    • 79  Gordon VM, Benz R, Fujii K, Leppla SH, Tweten RK: Clostridium septicum α-toxin is proteolytically activated by furin. Infect. Immun.65,4130–4134 (1997).
    • 80  Ballard J, Sokolov Y, Yuan WL, Kagan BL, Tweten RK: Activation and mechanism of Clostridium septicum α toxin. Mol. Microbiol.10,627–634 (1993).
    • 81  Gordon VM, Nelson KL, Buckley JT et al.: Clostridium septicum α-toxin uses glycosylphosphatidylinositol-anchored protein receptors. J. Biol. Chem.274,27274–27280 (1999).
    • 82  Hong Y, Ohishi K, Inoue N et al.: Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum α-toxin. EMBO J.21,5047–5056 (2002).
    • 83  Hang’ombe MB, Mukamoto M, Kohda T, Sugimoto N, Kozaki S: Cytotoxicity of Clostridium septicum α-toxin: its oligomerization in detergent resistant membranes of mammalian cells. Microb. Pathog.37,279–286 (2004).
    • 84  Sellman BR, Tweten RK: The propeptide of Clostridium septicum α toxin functions as an intramolecular chaperone and is a potent inhibitor of α toxin-dependent cytolysis. Mol. Microbiol.25,429–440 (1997).
    • 85  Sellman BR, Kagan BL, Tweten RK: Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum α toxin. Mol. Microbiol.23,531–538 (1997).
    • 86  Tweten RK: Clostridium perfringens β toxin and Clostridium septicum α toxin: their mechanisms and possible role in pathogenesis. Vet. Microbiol.82,1–9 (2001).
    • 87  Kennedy CL, Lyras D, Cordner LM et al.: Pore-forming activity of α-toxin is essential for clostridium septicum-mediated myonecrosis. Infect. Immun.77,943–951 (2009).
    • 88  Kennedy CL, Smith DJ, Lyras D, Chakravorty A, Rood JI: Programmed cellular necrosis mediated by the pore-forming α-toxin from Clostridium septicum. PLoS Pathog.5,e1000516 (2009).
    • 89  Knapp O, Maier E, Ben Mkaddem S et al.: Clostridium septicum α-toxin forms pores and induces rapid cell necrosis. Toxicon. (2009) (Epub ahead of print).
    • 90  Wichroski MJ, Melton JA, Donahue CG, Tweten RK, Ward GE: Clostridium septicum α-toxin is active against the parasitic protozoan Toxoplasma gondii and targets members of the SAG family of glycosylphosphatidylinositol-anchored surface proteins. Infect. Immun.70,4353–4361 (2002).
    • 91  Melton JA, Tweten RK: Clostridium septicum pore-forming α-toxin. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 623–630 (2006).
    • 92  Lindsay JA: Clostridium perfringens type A enterotoxin (CPE): more than just explosive diarrhea. Crit. Rev. Microbiol.22,257–277 (1996).
    • 93  Petit L, Gibert M, Popoff MR: Clostridium perfringens enterotoxin and C. perfringens food poisoning. In: Encyclopedia of Food Microbiology. Robinson R, Batt C, Patel P (Eds). Academic Press, London, UK, 438–444 (1999).
    • 94  Brynestad S, Sarker MR, McClane BA, Granum PE, Rood JI: The enterotoxin (CPE) plasmid from Clostridium perfringens is conjugative. Infect. Immun.69,3483–3487 (2001).
    • 95  Brynestad S, Synstad B, Granum PE: The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology143,2109–2115 (1997).
    • 96  Cornillot E, Saint-Joanis B, Daube G, Granum PE, Canard B, Cole ST: The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol. Microbiol.15,639–647 (1995).
    • 97  Sparks SG, Carman RJ, Sarker MR, McClane BA: Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J. Clin. Microbiol.39,883–888 (2001).
    • 98  Collie RE, McClane BA: Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J. Clin. Microbiol.36,30–36 (1998).
    • 99  Miyamoto K, Fisher DJ, Li J, Sayeed S, Akimoto S, McClane BA: Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J. Bacteriol.188,1585–1598 (2006).
    • 100  Kobayashi S, Wada A, Shibasaki S et al.: Spread of a large plasmid carrying the cpe gene and the tcp locus amongst Clostridium perfringens isolates from nosocomial outbreaks and sporadic cases of gastroenteritis in a geriatric hospital. Epidemiol. Infect.137,108–113 (2009).
    • 101  Li J, McClane BA: Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl. Environ. Microbiol.72,4561–4568 (2006).
    • 102  Li J, McClane BA: Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes. Appl. Environ. Microbiol.72,7620–7625 (2006).
    • 103  Lahti P, Heikinheimo A, Johansson T, Korkeala H: Clostridium perfringens type A strains carrying a plasmid-borne enterotoxin gene (genotype IS1151-cpe or IS1470-like-cpe) as a common cause of food poisoning. J. Clin. Microbiol.46,371–373 (2008).
    • 104  Tanaka D, Kimata K, Shimizu M et al.: Genotyping of Clostridium perfringens isolates collected from food poisoning outbreaks and healthy individuals in Japan based on the cpe locus. Jpn. J. Infect. Dis.60,68–69 (2007).
    • 105  Nakamura M, Kato A, Tanaka D et al.: PCR identification of the plasmid-borne enterotoxin gene (cpe) in Clostridium perfringens strains isolated from food poisoning outbreaks. Int. J. Med. Microbiol.294,261–265 (2004).
    • 106  Kokai-Kun JF, McClane BA: Deletion analysis of the Clostridium perfringens enterotoxin. Infect. Immun.65,1014–1022 (1997).
    • 107  Hanna PC, Mietzner TA, Schoolnik GK, McClane BA: Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region. J. Biol. Chem.266,11037–11043 (1991).
    • 108  Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S: Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett.476,258–261 (2000).
    • 109  Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N: Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J. Cell Biol.136,1239–1247 (1997).
    • 110  Sonoda N, Furuse M, Sasaki H et al.: Clostridium perfringens enterotoxin fragment removes specific claudin from tight junction strands: evidence for direct involvement of claudin in tight junction barrier. J. Cell Biol.147,195–204 (1999).
    • 111  Winkler L, Gehring C, Wenzel A et al.: Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3. J. Biol. Chem.284,18863–18872 (2009).
    • 112  Van Itallie CM, Betts L, Smedley JG 3rd, McClane BA, Anderson JM: Structure of the claudin-binding domain of Clostridium perfringens enterotoxin. J. Biol. Chem.283,268–274 (2008).
    • 113  Caserta JA, Hale ML, Popoff MR, Stiles BG, McClane BA: Evidence that membrane rafts are not required for the action of Clostridium perfringens enterotoxin. Infect. Immun.76,5677–5685 (2008).
    • 114  Wieckowski EU, Kokai-Kun JF, McClane BA: Characterization of membrane-associated Clostridium perfringens enterotoxin following pronase treatment. Infect. Immun.66,5897–5905 (1998).
    • 115  Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA: CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple complex species, one of which contains the tight junction protein occludin. J. Biol. Chem.275,18407–18417 (2000).
    • 116  Smedley JG 3rd, Uzal FA, McClane BA: Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect. Immun.75,2381–2390 (2007).
    • 117  Singh U, Mitic LL, Wieckowski EU, Anderson JM, McClane BA: Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells. J. Biol. Chem.276,33402–33412 (2001).
    • 118  Chakrabarti G, McClane BA: The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell. Microbiol.7,129–146 (2005).
    • 119  McClane BA: An overview of Clostridium perfringens enterotoxin. Toxicon34,1335–1343 (1996).
    • 120  Smedley JG 3rd, Saputo J, Parker JC et al.: Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect. Immun.76,3793–3800 (2008).
    • 121  Fernandez Miyakawa ME, Pistone Creydt V, Uzal FA, McClane BA, Ibarra C: Clostridium perfringens enterotoxin damages the human intestine in vitro.Infect. Immun.73,8407–8410 (2005).
    • 122  Sayeed S, Uzal FA, Fisher DJ et al.: β toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol. Microbiol.67,15–30 (2008).
    • 123  Fernandez-Miyakawa ME, Fisher DJ, Poon R et al.: Both ε-toxin and β-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect. Immun.75,1443–1452 (2007).
    • 124  Fisher DJ, Fernandez-Miyakawa ME, Sayeed S et al.: Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect. Immun.74,5200–5210 (2006).
    • 125  Vidal JE, McClane BA, Saputo J, Parker J, Uzal FA: Effects of Clostridium perfringens β-toxin on the rabbit small intestine and colon. Infect. Immun.76,4396–4404 (2008).
    • 126  Hunter SE, Brown E, Oyston PCF, Sakurai J, Titball RW: Molecular genetic analysis of β-toxin of Clostridium perfringens reveals sequence homology with α-toxin, γ-toxin, and leukocidin of Staphylococcus aureus.Infect. Immun.61,3958–3965 (1993).
    • 127  Gibert M, Perelle S, Daube G, Popoff MR: Clostridium spiroforme toxin genes are related to C. perfringens ι toxin genes but have a different genomic localization. Syst. Appl. Microbiol.20,337–347 (1997).
    • 128  Katayama S, Dupuy B, Daube G, China B, Cole S: Genome mapping of Clostridium perfringens strains with I-CeuI shows many virulence genes to be plamsid-borne. Mol. Gen. Genet.251,720–726 (1996).
    • 129  Sakurai J, Fujii Y, Matsuura M: Effect of oxidizing agents and sulfhydryl group reagents on β toxin from Clostridium perfringens type C. Microbiol. Immunol.24,595–601 (1980).
    • 130  Nagahama M, Miyawaki T, Kihara A et al.: Thiol group reagent-sensitive Clostridium perfringens β-toxin does not require a thiol group for lethal activity. Biochim. Biophys. Acta1454,97–105 (1999).
    • 131  Steinthorsdottir V, Fridiksdottir V, Gunnarson E, Andresson O: Site-directed mutagenesis of Clostridium perfringens β-toxin expression of wild type and mutant toxins in Bacillus subtilis.FEMS Microbiol. Lett.158,17–23 (1998).
    • 132  Steinthorsdottir V, Halldorson H, Andresson O: Clostridium perfringens β-toxin forms multimeric transmembrane pores in human endothelial cells. Microb. Pathog.28,45–50 (2000).
    • 133  Shatursky O, Bayles R, Rogers M, Jost BH, Songer JG, Tweten RK: Clostridium perfringens β-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect. Immun.68,5546–5551 (2000).
    • 134  Nagahama M, Hayashi H, Morimitsu S, Sakurai J: Biological activities and pore formation of Clostridium perfringens β toxin in HL60 cells. J. Biol. Chem.278,36934–36941 (2003).
    • 135  Nagahama M, Morimitsu S, Kihara A, Akita M, Setsu K, Sakurai J: Involvement of tachykinin receptors in Clostridium perfringens β-toxin-induced plasma extravasation. Br. J. Pharmacol.138,23–30 (2003).
    • 136  Nagahama M, Kihara A, Kintoh H, Oda M, Sakurai J: Involvement of tumour necrosis factor-α in Clostridium perfringens β-toxin-induced plasma extravasation in mice. Br. J. Pharmacol.153,1296–1302 (2008).
    • 137  Gibert M, Jolivet-Reynaud C, Popoff MR: β2 toxin, a novel toxin produced by Clostridium perfringens.Gene203,65–73 (1997).
    • 138  Herholz C, Miserez R, Nicolet J et al.: Prevalence of β2-toxigenic Clostridium perfringens in horses with intestinal disorders. J. Clin. Microbiol.37,358–361 (1999).
    • 139  Vilei EM, Schlatter Y, Perreten V et al.: Antibiotic-induced expression of a cryptic cpb2 gene in equine β2-toxigenic Clostridium perfringens.Mol. Microbiol.57,1570–1581 (2005).
    • 140  Waters M, Raju D, Garmory HS, Popoff MR, Sarker MR: Regulated expression of the β2-toxin gene (cpb2) in Clostridium perfringens type a isolates from horses with gastrointestinal diseases. J. Clin. Microbiol.43,4002–4009 (2005).
    • 141  Bacciarini LN, Boerlin P, Straub R, Frey J, Grone A: Immunohistochemical localization of Clostridium perfringens β2-toxin in the gastrointestinal tract of horses. Vet. Pathol.40,376–381 (2003).
    • 142  van Asten AJ, Nikolaou GN, Grone A: The occurrence of cpb2-toxigenic Clostridium perfringens and the possible role of the β2-toxin in enteric disease of domestic animals, wild animals and humans. Vet. J. (2008) (Epub ahead of print).
    • 143  Lebrun M, Filee P, Mousset B et al.: The expression of Clostridium perfringens consensus β2 toxin is associated with bovine enterotoxaemia syndrome. Vet. Microbiol.120,151–157 (2007).
    • 144  Harrison B, Raju D, Garmory HS, Brett MM, Titball RW, Sarker MR: Molecular characterization of Clostridium perfringens isolates from humans with sporadic diarrhea: evidence for transcriptional regulation of the β2-toxin-encoding gene. Appl. Environ. Microbiol.71,8362–8370 (2005).
    • 145  Fisher DJ, Miyamoto K, Harrison B, Akimoto S, Sarker MR, McClane BA: Association of β2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol. Microbiol.56,747–762 (2005).
    • 146  Waters M, Savoie A, Garmory HS et al.: Genotyping and phenotyping of β2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J. Clin. Microbiol.41,3584–3591 (2003).
    • 147  Jolivet-Reynaud C, Popoff MR, Vinit MA, Ravisse P, Moreau H, Alouf JE: Enteropathogenicity of Clostridium perfringens β toxin and other clostridial toxins. Zentralbl. Bakteriol.S15,145–151 (1986).
    • 148  Keyburn AL, Boyce JD, Vaz P et al.: NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens.PLoS Pathog.4,e26 (2008).
    • 149  Manich M, Knapp O, Gibert M et al.: Clostridium perfringens δ toxin is sequence related to β toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS ONE3,e3764 (2008).
    • 150  Chalmers G, Bruce HL, Hunter DB et al.: Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. J. Clin. Microbiol.46,3957–3964 (2008).
    • 151  Truscott RB, Al-Sheikhly F: Reproduction and treatment of necrotic enteritis in broilers. Am. J. Vet. Res.38,857–861 (1977).
    • 152  Al-Sheikhly F, Truscott RB: The interaction of Clostridium perfringens and its toxins in the production of necrotic enteritis of chickens. Avian Dis.21,256–263 (1977).
    • 153  Keyburn AL, Sheedy SA, Ford ME et al.: α-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect. Immun.74,6496–6500 (2006).
    • 154  Jolivet-Reynaud C, Launay JM, Alouf JE: Damaging effects of Clostridium perfringens δ toxin on blood platelets and their relevance to ganglioside GM2. Arch. Biochem. Biophys.262,59–66 (1988).
    • 155  Jolivet C, Alouf JE: Binding of Clostridium perfringens125I-labeled δ-toxin to erythrocytes. J. Biol. Chem.258,1871–1877 (1983).
    • 156  Jolivet-Reynaud C, Hauttecoeur B, Alouf J: Interaction of Clostridium perfringens δ-toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2. Toxicon27,1113–1126 (1989).
    • 157  Stevens DL, Troyer BE, Merrick DT, Mitten JE, Olson RD: Lethal effects and cardiovascular effects of purified α- and τ-toxins from Clostridium perfringens.J. Infect. Dis.157,272–279 (1988).
    • 158  Flores-Diaz M, Alape-Giron A: Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon42,979–986 (2003).
    • 159  Shimizu-Reynaud T, Ohtani K, Ba-Thein W, Inui S, Nakamura S, Hayashi H: Characterization of α toxin-deficient Clostridium perfringens strain, KZ1340. Microbiol. Immunol.40,141–145 (1996).
    • 160  Brett MM: Outbreaks of food-poisoning associated with lecithinase-negative Clostridium perfringens.J. Med. Microbiol.41,405–407 (1994).
    • 161  Justin N, Walker N, Bullifent HL et al.: The first strain of Clostridium perfringens isolated from an avian source has an α-toxin with divergent structural and kinetics properties. Biochemistry41,6253–6262 (2002).
    • 162  Abildgaard L, Engberg RM, Pedersen K, Schramm A, Hojberg O: Sequence variation in the α-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens. Vet. Microbiol.136,293–299 (2008).
    • 163  Sheedy SA, Ingham AB, Rood JI, Moore RJ: Highly conserved α-toxin sequences of avian isolates of Clostridium perfringens.J. Clin. Microbiol.42,1345–1347 (2004).
    • 164  Naylor CE, Eaton JT, Howells A et al.: Structure of the key toxin in gas gangrene. Nat. Struct. Biol.5,738–746 (1998).
    • 165  Titball RW, Leslie DL, Harvey S, Kelly D: Hemolytic and sphingomyelinase activities of Clostridium perfringens α-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect. Immun.59,1872–1874 (1991).
    • 166  Guillouard I, Garnier T, Cole S: Use of site-directed mutagenesis to probe structure–function relationship of α-toxin from Clostridium perfringens.Infect. Immun.64,2440–2444 (1996).
    • 167  Nagahama M, Nakayama T, Michiue K, Sakurai J: Site-specific mutagenesis of Clostridium perfringens α-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activites. Infect. Immun.65,3489–3492 (1997).
    • 168  Nagahama MY, Okagawa T, Nakayama T, Nishioka E, Sakurai J: Site directed mutagenesis of histidine residues in Clostridium perfringens α-toxin. J. Bacteriol.177,1179–1185 (1995).
    • 169  Eaton JT, Naylor CE, Howells AM, Moss DS, Titball RW, Basak AK: Crystal structure of the C. perfringens α-toxin with the active site closed by a flexible loop region. J. Mol. Biol.319,275–281 (2002).
    • 170  Titball RW: Biochemical and immunological properties of the C-terminal domain of the α-toxin of Clostridium perfringens.FEMS Microbiol. Lett.110,45–50 (1993).
    • 171  Nagahama M, Mukai M, Morimitsu S, Ochi S, Sakurai J: Role of the C-domain in the biological activities of Clostridium perfringens α-toxin. Microbiol. Immunol.46,647–655 (2002).
    • 172  Moreau H, Pieroni G, Jolivet-Reynaud C, Alouf JE, Verger R: A new kinetic approach for studying phospholipase C (Clostridium perfringens α toxin) activity on phospholipid monolayers. Biochemistry27,2319–2323 (1988).
    • 173  Nagahama M, Michiue K, Mukai M, Ochi S, Sakurai J: Mechanism of membrane damage by Clostridium perfringens α-toxin. Microbiol. Immunol.42,533–538 (1998).
    • 174  Jepson M, Howells A, Bullifent HL et al.: Differences in the carboxy-terminal (putative phospholipid binding) domains of Clostridium perfringens and Clostridium bifermentans phospholipases C influence the hemolytic and lethal properties of these enzymes. Infect. Immun.67,3297–3301 (1999).
    • 175  Guillouard I, Alzari PM, Saliou B, Cole ST: The carboxy-terminal C2-like domain of the α-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition. Mol. Microbiol.26,867–876 (1997).
    • 176  Williamson ED, Titball RW: A genetically engineered vaccine against the α-toxin of Clostridium perfringens also protects mice against experimental gas gangrene. Vaccine11,1253–1258 (1993).
    • 177  Titball RW, Naylor CE, Basak AK: The Clostridium perfringens α-toxin. Anaerobe5,51–64 (1999).
    • 178  Nagahama M, Michiue K, Sakurai J: Membrane-damaging action of Clostridium perfringens α-toxin on phospholipid liposomes. Biochim. Biophys. Acta1280,120–126 (1996).
    • 179  Nagahama M, Otsuka A, Oda M et al.: Effect of unsaturated bonds in the sn-2 acyl chain of phosphatidylcholine on the membrane-damaging action of Clostridium perfringens α-toxin toward liposomes. Biochim. Biophys. Acta1768,2940–2945 (2007).
    • 180  Sakurai J, Ochi S, Tanaka H: Evidence for coupling of Clostridium perfringens α-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect. Immun.61,3711–3718 (1993).
    • 181  Ochi S, Hashimoto K, Nagahama M, Sakurai J: Phospholipid metabolism induced by Clostridium perfringens α-toxin elicits a hot cold type of hemolysis in rabbit erythrocytes. Infect. Immun.64,3930–3933 (1996).
    • 182  Oda M, Matsuno T, Shiihara R et al.: The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens α-toxin. J. Lipid Res.49,1039–1047 (2008).
    • 183  Sakurai J, Nagahama M, Oda M: Clostridium perfringens α-toxin: characterization and mode of action. J. Biochem.136,569–574 (2004).
    • 184  Oda M, Ikari S, Matsuno T, Morimune Y, Nagahama M, Sakurai J: Signal transduction mechanism involved in Clostridium perfringens α-toxin-induced superoxide anion generation in rabbit neutrophils. Infect. Immun.74,2876–2886 (2006).
    • 185  O’Brien DK, Melville SB: Effects of Clostridium perfringens α-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect. Immun.72,5204–5215 (2004).
    • 186  Bryant AE, Bayer CR, Hayes-Schroer SM, Stevens D: Activation of platelet gpIIIa by phospholipase C from Clostridium perfringens involves store-operated calcium entry. J. Infect. Dis.187,408–417 (2003).
    • 187  Bryant AE, Chen RYZ, Nagata Y et al.: Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene. J. Infect. Dis.182,808–815 (2000).
    • 188  Bryant AE, Chen RYZ, Nagata Y et al.: Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens.J. Infect. Dis.182,799–807 (2000).
    • 189  Bunting M, Lorant DE, Bryant AE et al.: A toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J. Clin. Invest.100,565–574 (1997).
    • 190  Abe A, Matsuzawa T, Kuwae A: Type-III effectors: sophisticated bacterial virulence factors. C. R. Biol.328,413–428 (2005).
    • 191  Flores-Diaz M, Alape-Giron A, Titball RW et al.: UDP-glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C. J. Biol. Chem.273,24433–24438 (1998).
    • 192  Matsushita O, Jung CM, Katayama S, Minami J, Takahashi Y, Okabe A: Gene duplication and multiplicity of collagenases in Clostridium histolyticum.J. Bacteriol.181, 923–933 (1999).
    • 193  Jung CM, Matsushita O, Katayama S, Minami J, Sakurai J, Okabe A: Identification of metal ligands in the Clostridium histolyticum ColH collagenase. J. Bacteriol.181,2816–2822 (1999).
    • 194  Matsushita O, Jung CM, Minami J, Katayama S, Nishi N, Okabe A: A study of the collagen-binding domain of a 116 kDa Clostridium histolyticum collagenase. J. Biol. Chem.273,3643–3648 (1998).
    • 195  Matsushita O, Okabe A: Clostridial hydrolytic enzymes degrading extracellular components. Toxicon39,1769–1780 (2001).
    • 196  Wilson JJ, Matsushita O, Okabe A, Sakon J: A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. EMBO J.22,1743–1752 (2003).
    • 197  Matsushita O, Yoshihara K, Katayama S, Minami J, Okabe A: Purification and characterization of a Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J. Bacteriol.176,149–156 (1994).
    • 198  Awad MM, Ellemor DM, Bryant AE et al.: Construction and virulence testing of a collagenase mutant of Clostridium perfringens.Microb. Pathog.28,107–117 (2000).
    • 199  Okumura K, Ohtani K, Hayashi H, Shimizu T: Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens.J. Bacteriol.190,7719–7727 (2008).
    • 200  Petit L, Gibert M, Popoff MR: Clostridium perfringens: toxinotype and genotype. Trends Microbiol.7,104–110 (1999).
    • 201  Popoff MR: Molecular biology of actin-ADP-ribosylating toxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 275–302 (2000).
    • 202  Barth H, Aktories K, Popoff MR, Stiles BG: Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev.68,373–402 (2004).
    • 203  Popoff MR, Stiles BG: Bacterial toxins and virulence factors targetting the actin cytoskeleton and intercellular junctions. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 154–187 (2006).
    • 204  Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR: Clostridium perfringens ι-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect. Immun.68,3848–3853 (2000).
    • 205  Ohishi I: Structure and function of actin-adenosine-diphosphate-ribosylating toxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 253–273 (2000).
    • 206  Petosa C, Collier JR, Klimpel KR, Leppla SH, Liddington RC: Crystal structure of the anthrax toxin protective antigen. Nature385,833–838 (1997).
    • 207  Cunningham K, Lacy DB, Mogridge J, Collier RJ: Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc. Natl Acad. Sci. USA99,7049–7053 (2002).
    • 208  Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG: Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol.160,321–328 (2003).
    • 209  Mogridge J, Cuningham K, Lacy DB, Mourez M, Collier RJ: The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc. Natl Acad. Sci. USA99,7045–7048 (2002).
    • 210  Mogridge J, Cunningham K, Collier RJ: Stoichiometry of anthrax toxin complexes. Biochemistry41,1079–1082 (2002).
    • 211  Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE: Structure and action of the binary C2 toxin from Clostridium botulinum.J. Mol. Biol.364,705–715 (2006).
    • 212  Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K: The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect. Immun.68,4566–4573 (2000).
    • 213  Marvaud JC, Smith T, Hale ML, Popoff MR, Smith LA, Stiles BG: Clostridium perfringens ι-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect. Immun.69,2435–2441 (2001).
    • 214  Stiles B, Hale ML, Marvaud JC, Popoff MR: Clostridium perfringens ι toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry. Infect. Immun.68,3475–3484 (2000).
    • 215  Eckhardt M, Barth H, Blöcker D, Aktories K: Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J. Biol. Chem.275,2328–2334 (2000).
    • 216  Barth H, Hofmann F, Olenik C, Just I, Aktories K: The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect. Immun.66,1364–1369 (1998).
    • 217  Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA: Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat. Struct. Biol.6,932–936 (1999).
    • 218  Tsuge H, Nagahama M, Nishimura H et al.: Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens ι-toxin. J. Mol. Biol.325,471–483 (2003).
    • 219  Marvaud JC, Stiles BG, Chenal A et al.: Clostridium perfringens ι toxin: mapping of the Ia domain involved in docking with Ib and cellular internalization. J. Biol. Chem.277,43659–43666 (2002).
    • 220  Barth H, Roebling R, Fritz M, Aktories K: The binary Clostridium botulinum C2 toxin as a protein delivery system. J. Biol. Chem.277,5074–5081 (2002).
    • 221  Tsuge H, Nagahama M, Oda M et al.: Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin. Proc. Natl Acad. Sci. USA105,7399–7404 (2008).
    • 222  Perelle S, Gibert M, Boquet P, Popoff MR: Characterization of Clostridium perfringens ι-toxin genes and expression in Escherichia coli. Infect. Immun.61,5147–5156 (Author’s correction: 63,4967 [1995]) (1993).
    • 223  Simpson LL, Stiles BG, Zepeda HH, Wilkins TD: Molecular basis for the pathological actions of Clostridium perfringens ι toxin. Infect. Immun.55,118–122 (1987).
    • 224  Bachmeyer C, Benz R, Barth H, Aktories K, Gibert M, Popoff MR: Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function in chloroquine and related compounds in vitro and toxin action in vivo.FASEB J.15,1658–1660 (2001).
    • 225  Barth H, Blöcker D, Behlke J et al.: Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J. Biol. Chem.275,18704–18711 (2000).
    • 226  Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR: Interaction of Clostridium perfringens ι-toxin with lipid bilayer membranes. J. Biol. Chem.277,6143–6152 (2002).
    • 227  Schmid A, Benz R, Just I, Aktories K: Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. J. Biol. Chem.269,16706–16711 (1994).
    • 228  Gibert M, Marvaud JC, Pereira Y et al.: Differential requirement for the translocation of clostridial binary toxins: ι toxin requires a membrane potential gradient. FEBS Lett.581,1287–1296 (2007).
    • 229  Ohishi I: Activation of botulinum C2 toxin by trypsin. Infect. Immun.55,1461–1465 (1987).
    • 230  Stiles BG, Hale ML, Marvaud JC, Popoff MR: Clostridium perfringens ι toxin: characterization of the cell-asociated ι b complex. Biochem. J.367,801–808 (2002).
    • 231  Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R: Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel. J. Biol. Chem.283,3904–3914 (2008).
    • 232  Lang AE, Neumeyer T, Sun J, Collier RJ, Benz R, Aktories K: Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin. Biochemistry47,8406–8413 (2008).
    • 233  Kaiser E, Haug G, Hliscs M, Aktories K, Barth H: Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction. Biochemistry45,13361–13368 (2006).
    • 234  Haug G, Aktories K, Barth H: The host cell chaperone Hsp90 is necessary for cytotxic action of the binary ι-like toxins. Infect. Immun.72,3066–3068 (2004).
    • 235  Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H: The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J. Biol. Chem.278,32266–32274 (2003).
    • 236  Ratts R, Zeng H, Berg EA et al.: The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J. Cell Biol.160,1139–1150 (2003).
    • 237  Richard JF, Mainguy G, Gibert M, Marvaud JC, Stiles BG, Popoff MR: Transcytosis of ι toxin across polarized CaCo-2 cell monolayers. Mol. Microbiol.43,907–917 (2002).
    • 238  Reuner KH, Dunker P, van der Does A et al.: Regulation of actin synthesis in rat hepatocytes by cytoskeleton rearrangements. Eur. J. Cell Biol.69,189–196 (1996).
    • 239  Kiefer G, Lerner M, Sehr P, Just I, Aktories K: Cytotoxic effects by microinjection of ADP-ribosylated skeletal muscle G-actin in PtK2 cells in the absence of Clostridium perfringens ι toxin. Med. Microbiol. Immunol.184,175–180 (1996).
    • 240  Uematsu Y, Kogo Y, Ohishi I: Disassembly of actin filaments by botulinum C2 toxin and actin-filament-disrupting agents induces assembly of microtubules in human leukaemia cell lines. Biol. Cell99,141–150 (2007).
    • 241  Barth H, Klinger M, Aktories K, Kinzel V: Clostridium botulinum C2 toxin delays entry into mitosis and activation of p34cdc2 kinase and cdc25-C phosphatase in Hela cells. Infect. Immun.67,5083–5090 (1999).
    • 242  Vershueren H, van der Taelen I, Dewit J et al.: Effects of Clostridium botulinum C2 toxin and cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma cell line. Eur. J. Cell Biol.66,335–341 (1995).
    • 243  Mauss S, Koch G, Kreye VAW, Aktories K: Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: evidence for a role of G/F-actin transition in smooth muscle contraction. Naunyn Schmiedebergs Arch. Pharmacol.340,345–351 (1989).
    • 244  Ermert L, Brückner H, Walmrath D et al.: Role of endothelial cytoskeleton in high-permeability edema due to botulism C2 toxin in perfused rabbit lungs. Am. J. Physiol.268,L753–L761 (1995).
    • 245  Aktories K, Koch G: Modification of actin and Rho proteins by clostridial ADP-ribosylating toxins. In: Bacterial Toxins and Virulence Factors in Disease. Iglewski B, Moss J, Vaughan M (Eds). Marcel Dekker, NY, USA, 491–520 (1995).
    • 246  Vogelsgesang M, Pautsch A, Aktories K: C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins. Naunyn Schmiedebergs Arch. Pharmacol.374,347–360 (2007).
    • 247  Han S, Arvai AS, Clancy SB, Tainer JA: Crystal structure and novel recognition motif of Rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J. Mol. Biol.305,95–107 (2001).
    • 248  Vogelsgesang M, Stieglitz B, Herrmann C, Pautsch A, Aktories K: Crystal structure of the Clostridium limosum C3 exoenzyme. FEBS Lett.582,1032–1036 (2008).
    • 249  Evans HR, Holloway DE, Sutton JM, Ayriss J, Shone CC, Acharya KR: C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure. Acta Crystallogr. D Biol. Crystallogr.60,1502–1505 (2004).
    • 250  Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR: The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J. Biol. Chem.278,45924–45930 (2003).
    • 251  Ménétrey J, Flatau G, Stura EA et al.: NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme. J. Biol. Chem.277,30950–30957 (2002).
    • 252  Menetrey J, Flatau G, Boquet P, Menez A, Stura EA: Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes. Protein Sci.17,878–886 (2008).
    • 253  Wilde C, Chhatwal GS, Schmalzing G, Aktories K, Just I: A novel C3-like ADP-ribosyltransferase from Staphyloccocus aureus modifyng RhoE and Rnd3. J. Biol. Chem.276,9537–9542 (2001).
    • 254  Aktories K, Just I: Clostridial Rho-inhibiting protein toxins. Curr. Top. Microbiol. Immunol.291,113–145 (2005).
    • 255  Hall A: Rho GTPases and the actin cytoskeleton. Science279,509–514 (1998).
    • 256  Wei Y, Zhang Y, Derewenda U et al.: Crystal structure of RhoA-GDP and its functional implications. Nat. Struct. Biol.4,699–703 (1997).
    • 257  Bourmeyster N, Strasia MJ, Garin J, Gagnon J, Boquet P, Vignais P: Copurification of Rho protein and the Rho GDP dissociation inhibitor from bovine neutrophil cytosol. Effects of phosphoinositides on Rho ADP-ribosylation by the C3 exoenzyme of Clostridium botulinum.Biochemistry31,12863–12869 (1992).
    • 258  Ren XD, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Anderson RA, Schwartz MA: Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in swiss 3T3 cells. Mol. Biol. Cell7,435–442 (1996).
    • 259  Sehr P, Gili J, Genth H, Just I, Pick E, Aktories K: Glucosylation and ADP ribosylation of Rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry37,5296–5304 (1998).
    • 260  Genth H, Schmidt M, Gerhard R, Aktories K, Just I: Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochem. Biophys. Res. Commun.302,127–132 (2003).
    • 261  Genth H, Gerhard R, Maeda A et al.: Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J. Biol. Chem.278,28523–28527 (2003).
    • 262  Fujihara H, Walker LA, Gong MC et al.: Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B. Mol. Biol. Cell8,2437–2447 (1997).
    • 263  Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK: Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J. Biol. Chem.274,27407–27414 (1999).
    • 264  Holbourn KP, Sutton JM, Evans HR, Shone CC, Acharya KR: Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase. Proc. Natl Acad. Sci. USA102,5357–5362 (2005).
    • 265  Pautsch A, Vogelsgesang M, Trankle J, Herrmann C, Aktories K: Crystal structure of the C3bot–RalA complex reveals a novel type of action of a bacterial exoenzyme. EMBO J.24(20),3670–3680 (2005).
    • 266  Ahnert-Hilger G, Holtje M, Grosse G et al.: Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J. Neurochem.90,9–18 (2004).
    • 267  Holtje M, Djalali S, Hofmann F et al.: A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J.23,1115–1126 (2009).
    • 268  Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM: The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J.8,1087–1092 (1989).
    • 269  Ridley AJ, Hall A: The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell70,389–399 (1992).
    • 270  Fukata M, Kaibuchi K: Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nat. Rev. Mol. Cell Biol.2,887–897 (2001).
    • 271  Aktories K, Barth H, Just I: Clostridium botulinum C3 exoenzyme and C3-like transferases. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 207–233 (2000).
    • 272  Aktories K, Wilde C, Vogelsgesang M: Rho-modifying C3-like ADP-ribosyltransferases. Rev. Physiol. Biochem. Pharmacol.152,1–22 (2004).
    • 273  Boyer L, Doye A, Rolando M et al.: Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors. J. Cell Biol.173,809–819 (2006).
    • 274  Czech A, Yamaguchi T, Bader L et al.: Prevalence of Rho-inactivating epidermal cell differentiation inhibitor toxins in clinical Staphylococcus aureus isolates. J. Infec. Dis.184,785–788 (2001).
    • 275  O ’Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I: Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus.J. Clin. Microbiol.45,1505–1510 (2007).
    • 276  Jank T, Aktories K: Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol.16,222–229 (2008).
    • 277  Amimoto K, Noro T, Oishi E, Shimizu M: A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology153,1198–1206 (2007).
    • 278  Na X, Kim H, Moyer MP, Pothoulakis C, LaMont JT: gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun.76,2862–2871 (2008).
    • 279  Greco A, Ho JG, Lin SJ, Palcic MM, Rupnik M, Ng KK: Carbohydrate recognition by Clostridium difficile toxin A. Nat. Struct. Mol. Biol.13,460–461 (2006).
    • 280  Ho JG, Greco A, Rupnik M, Ng KK: Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl Acad. Sci. USA102,18373–18378 (2005).
    • 281  Hofmann F, Busch C, Aktories K: Chimeric clostridial cytotoxins: identification of the N-terminal region involved in protein substrate recognition. Infect. Immun.66,1076–1081 (1998).
    • 282  Hofmann F, Busch C, Prepens U, Just I, Aktories K: Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem.272,11074–11078 (1997).
    • 283  Rupnik M, Pabst S, Rupnik M, von Eichel-Streiber C, Urlaub H, Soling HD: Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology151,199–208 (2005).
    • 284  Ziegler MO, Jank T, Aktories K, Schulz GE: Conformational changes and reaction of clostridial glycosylating toxins. J. Mol. Biol.377,1346–1356 (2008).
    • 285  Reinert DJ, Jank T, Aktories K, Schulz GE: Structural basis for the function of Clostridium difficile toxin B. J. Mol. Biol.351,973–981 (2005).
    • 286  Just I, Hofmann F, Aktories K: Molecular mechanism of action of the large clostridial cytotoxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 307–331 (2000).
    • 287  Busch C, Schömig K, Hofmann F, Aktories K: Characterization of the catalytic domain of Clostridium novyi α toxin. Infect. Immun.68,6378–6383 (2000).
    • 288  Busch C, Hofmann F, Gerhard R, Aktories K: Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases. J. Biol. Chem.275,13228–13234 (2000).
    • 289  Jank T, Giesemann T, Aktories K: Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding. J. Biol. Chem.282,35222–35231 (2007).
    • 290  Jank T, Reinert DJ, Giesemann T, Schulz GE, Aktories K: Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis. J. Biol. Chem.280(45),37833–37838 (2005).
    • 291  Mesmin B, Robbe K, Geny B et al.: A phosphatidylserine-binding site in the cytosolic fragment of Clostridium sordellii lethal toxin facilitates glucosylation of membrane-bound Rac and is required for cytotoxicity. J. Biol. Chem.279,49876–49882 (2004).
    • 292  Müller S, von Eichel-Streiber C, Moos M: Impact of amino acids 22–27 of rho subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and tcdB-8864. Eur. J. Biochem.266,1073–1080 (1999).
    • 293  Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K: Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J. Biol. Chem.276,10670–10676 (2001).
    • 294  Fiorentini C, Thelestam M: Clostridium difficile toxin A and its effects on cells. Toxicon29,543–567 (1991).
    • 295  Popoff MR, Chaves-Olarte E, Lemichez E et al.: Ras, Rap, and rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J. Biol. Chem.271,10217–10224 (1996).
    • 296  Qa’dan M, Spyres LM, Ballard JD: pH-induced conformational changes in Clostridium difficile toxin B. Infect. Immun.68,2470–2474 (2000).
    • 297  Qa’dan M, Spyres LM, Ballard JD: pH-induced cytopathic effects of Clostridium sordellii lethal toxin. Infect. Immun.69,5487–5493 (2001).
    • 298  Giesemann T, Jank T, Gerhard R et al.: Cholesterol-dependent pore formation of Clostridium difficile toxin A. J. Biol. Chem.281,10808–10815 (2006).
    • 299  Egerer M, Giesemann T, Herrmann C, Aktories K: Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. J. Biol. Chem.284,3389–3395 (2009).
    • 300  Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K: Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J. Biol. Chem.282,25314–25321 (2007).
    • 301  Reineke J, Tenzer S, Rupnik M et al.: Autocatalytic cleavage of Clostridium difficile toxin B. Nature446,415–419 (2007).
    • 302  Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K: Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature375,500–503 (1995).
    • 303  Just I, Wilm M, Selzer J et al.: The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem.270,13932–13936 (1995).
    • 304  Hermann C, Ahmadian MR, Hofmann F, Just I: Functional consequences of monoglucosylation of Ha-Ras at effector domain amino acid threonine 35. J. Biol. Chem.273,16134–16139 (1998).
    • 305  Vetter IR, Hofmann F, Wohlgemuth S, Hermann C, Just I: Structural consequences of monoglucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J. Mol. Biol.301,1091–1095 (2000).
    • 306  Genth H, Aktories K, Just I: Monoglucosylation of RhoA at threonine 37 blocks cytosol membrane recycling. J. Biol. Chem.274,29050–29056 (1999).
    • 307  Halabi-Cabezon I, Huelsenbeck J, May M et al.: Prevention of the cytopathic effect induced by Clostridium difficile Toxin B by active Rac1. FEBS Lett.582,3751–3756 (2008).
    • 308  Chen ML, Pothoulakis C, LaMont JT: Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J. Biol. Chem.277,4247–4254 (2002).
    • 309  Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA: Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun.69,1329–1336 (2001).
    • 310  Boehm C, Gibert M, Geny B, Popoff MR, Rodriguez P: Modification of epithelial cell barrier permeability and intercellular junctions by Clostridium sordellii lethal toxin. Cell. Microbiol.8,1070–1085 (2006).
    • 311  Geny B, Khum H, Fitting C et al.: Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability. Am. J. Pathol.170,1003–1017 (2007).
    • 312  Nottrott S, Schoentaube J, Genth H, Just I, Gerhard R: Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases. Apoptosis12,1443–1453 (2007).
    • 313  Gerhard R, Nottrott S, Schoentaube J, Tatge H, Olling A, Just I: Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells. J. Med. Microbiol.57,765–770 (2008).
    • 314  Kim H, Rhee SH, Pothoulakis C, Lamont JT: Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology133,875–886 (2007).
    • 315  Genth H, Dreger SC, Huelsenbeck J, Just I: Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int. J. Biochem. Cell Biol.40,592–597 (2008).
    • 316  Matarrese P, Falzano L, Fabbri A et al.: Clostridium difficile toxin B causes apoptosis in epithelial cells by thrilling mitochondria: involvement of ATP-sensitive mitochondrial potassium channels. J. Biol. Chem.282,9029–9041 (2007).
    • 317  Petit P, Breard J, Montalescol V et al.: Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell. Microbiol.5,761–771 (2003).
    • 318  Just I, Gerhard R: Large clostridial cytotoxins. Rev. Physiol. Biochem. Pharmacol.152,23–47 (2004).
    • 319  Gerhard R, Tatge H, Genth H et al.: Clostridium difficile toxin A induces expression of the stress-induced early gene product RhoB. J. Biol. Chem.280,1499–1505 (2005).
    • 320  Huelsenbeck J, Dreger SC, Gerhard R, Fritz G, Just I, Genth H: Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile.Biochemistry46,4923–4931 (2007).
    • 321  Pothoulakis C, Lamont JT: Microbes and microbial toxins: paradigms for microbial-mucosa interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol.280,G178–G183 (2001).
    • 322  Savidge TC, Pan WH, Newman P, O’Brien M, Anton PM, Pothoulakis C: Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. Gastroenterology125,413–420 (2003).
    • 323  Warny M, Keates AC, Keates S et al.: p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest.105,1147–1156 (2000).
    • 324  Na X, Zhao D, Koon HW et al.: Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology128,1002–1011 (2005).
    • 325  Wershil B, Castagliuolo I, Pothoulakis C: Mast cell involvement in Clostridium difficile toxin A-induced intestinal fluid secretion and neutrophil recruitment in mice. Gastroenterology114,956–964 (1998).
    • 326  He D, Hagen SJ, Pothoulakis C et al.: Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology119,139–150 (2000).
    • 327  Geny B, Popoff MR: Activation of a c-Jun-NH2-terminal kinase pathway by the lethal toxin from Clostridium sordellii, TcsL-82, occurs independently of the toxin intrinsic enzymatic activity and facilitates small GTPase glucosylation. Cell. Microbiol.11(7),1102–1113 (2009).
    • 328  Ben El Hadj N, Popoff MR, Marvaud JC et al.: G-protein-stimulated phospholipase D activity is inhibited by lethal toxin from Clostridium sordellii in HL-60 cells. J. Biol. Chem.274,14021–14031 (1999).
    • 329  Schmidt M, Vos M, Thiel M et al.: Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. J. Biol. Chem.273,7413–7422 (1998).
    • 330  Kim JH, Lee SD, Han JM et al.: Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. FEBS J.430,231–235 (1998).
    • 331  Luo JQ, Liu X, Hammond SM et al.: RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochem. Biophys. Res. Commun.235,854–859 (1997).
    • 332  Kelly CP, LaMont JT: Clostridium difficile – more difficult than ever. N. Engl. J. Med.359,1932–1940 (2008).
    • 333  Voth DE, Ballard JD: Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev.18,247–263 (2005).
    • 334  Lyras D, O’Connor JR, Howarth PM et al.: Toxin B is essential for virulence of Clostridium difficile.Nature458(7242),1176–1179 (2009).
    • 335  Songer JG: Clostridial diseases in domestic animals. In: Handbook on Clostridia. Dürre P (Ed.). CRC Press, Taylor and Francis Group, FL, USA, 527–542 (2005).
    • 336  Clark S: Sudden death in periparturient sheep associated with Clostridium sordellii.Vet. Rec.153,340 (2003).
    • 337  Lewis CJ, Naylor RD: Sudden death in sheep associated with Clostridium sordellii.Vet. Rec.142,417–421 (1998).
    • 338  Lewis CJ, Naylor R: Sudden death in lambs associated with Clostridium sordellii infection. Vet. Rec.138,262 (1996).
    • 339  Al-Mashat RR, Taylor DJ: Production of diarrhea and enteritic lesions in calves by the oral inoculation of pure cultures of Clostridium sordellii.Vet. Rec.112,141–146 (1983).
    • 340  Richards SM, Hunt BW: Clostridium sordellii in lambs. Vet. Rec.111,22 (1982).
    • 341  Al-Mashat RR, Taylor DJ: Clostridium sordellii in enteritis in an adult sheep. Vet. Rec.112,19 (1983).
    • 342  Popoff MR: Bacteriological examination in enterotoxaemia of sheep and lamb. Vet. Rec.114,324 (1984).
    • 343  Bigalke H, Shoer LF: Clostridial neurotoxins. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 407–443 (2000).
    • 344  Herreros J, Lalli G, Montecucco C, Schiavo G: Pathophysiological properties of clostridial neurotoxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Freer JH (Eds). Academic Press, London, UK, 202–228 (1999).
    • 345  Humeau Y, Doussau F, Grant NJ, Poulain B: How botulinum and tetanus neurotoxins block neurotransmitter. Biochimie82,427–446 (2000).
    • 346  Meunier FA, Herreros J, Schiavo G, Poulain B, Molgo J: Molecular mechanism of action of botulinal neurotoxins and the synaptic remodeling they induce in vivo at the skeletal neuromuscular junction. In: Handbook of Neurotoxicology. Massaro J (Ed.). Humana Press, NJ, USA, 305–347 (2002).
    • 347  Meunier FA, Schiavo G, Molgo J: Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular trasnmission. J. Physiol.96,105–113 (2002).
    • 348  Poulain B, Dousseau F, Colasante C, Deloye F, Molgo J: Cellular and molecular mode of action of botulinum and tetanus neurotoxins. Adv. Organ Biol.2,285–313 (1997).
    • 349  Poulain B, Popoff MR, Molgo J: How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechaism of action. Botulinum J.1,14–87 (2008).
    • 350  Schiavo G, Matteoli M, Montecucco C: Neurotoxins affecting neuroexocytosis. Physiol. Rev.80,717–766 (2000).
    • 351  Hill KK, Smith TJ, Helma CH et al.: Genetic diversity among botulinum neurotoxin-producing clostridial strains. J. Bacteriol.189,818–832 (2007).
    • 352  Smith TJ, Hill KK, Foley BT et al.: Analysis of the neurotoxin complex genes in Clostridium botulinum A1–A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS ONE2,e1271 (2007).
    • 353  Smith TJ, Lou J, Geren N et al.: Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect. Immun.73,5450–5457 (2005).
    • 354  Arndt ER, Jacobson MJ, Abola EE et al.: A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4. J. Mol. Biol.362,733–742 (2006).
    • 355  Chen Y, Korkeala H, Aarnikunnas J, Lindstrom M: Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J. Bacteriol.189,8643–8650 (2007).
    • 356  Carter AT, Paul CJ, Mason DR et al.: Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.BMC Genomics10,115 (2009).
    • 357  Popoff MR, Marvaud JC: Structural and genomic features of clostridial neurotoxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Freer JH (Eds). Academic Press, London, UK, 174–201 (1999).
    • 358  Hasegawa K, Watanabe T, Suzuki T et al.: A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. J. Biol. Chem.282,24777–24783 (2007).
    • 359  Lietzow MA, Gielow ET, Le D, Zhang J, Verhagen MF: Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J.27,420–425 (2008).
    • 360  Call JE, Cooke PH, Miller AJ: In situ characterization of Clostridium botulinum neurotoxin synthesis and export. J. Appl. Bacteriol.79,257–263 (1995).
    • 361  Emsley P, Fotinou C, Black I et al.: The structures of the Hc fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J. Biol. Chem.275,8889–8894 (2000).
    • 362  Lacy DB, Stevens RC: Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol.291,1091–1104 (1999).
    • 363  Lacy DB, Tepp W, Cohen AC, Das Gupta BR, Stevens RC: Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol.5,898–902 (1998).
    • 364  Umland TC, Wingert LM, Swaminathan S, Furey WF, Schmidt JJ, Sax M: The structure of the receptor binding fragment Hc of tetanus neurotoxin. Nat. Struct. Biol.4,788–792 (1997).
    • 365  Fotinou C, Emsley P, Black I et al.: The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J. Biol. Chem.276,3274–3281 (2001).
    • 366  Breidenbach MA, Brunger AT: 2.3 Å crystal structure of tetanus neurotoxin light chain. Biochemistry44,7450–7457 (2005).
    • 367  Fu Z, Chen S, Baldwin MR et al.: Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. Biochemistry45,8903–8911 (2006).
    • 368  Swaminathan S, Eswaramoorthy S: Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol.7,693–699 (2000).
    • 369  Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC: Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b – insight into the toxin–neuron interaction. PLoS Pathog.4,e1000129 (2008).
    • 370  Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S: Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J. Mol. Biol.386,233–245 (2009).
    • 371  Maksymowych AB, Simpson LL: Binding and transcytosis of botulinum neurotoxin by polarized human carcinoma cells. J. Biol. Chem.273,21950–21957 (1998).
    • 372  Maksymowych AB, Simpson LI: Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. J. Pharmacol. Exp. Ther.210,633–641 (2004).
    • 373  Ahsan CR, Hajnoczky G, Maksymowych AB, Simpson LL: Visualization of binding and transcytosis of botulinum toxin by human intestinal epithelial cells. J. Pharmacol. Exp. Ther.315,1028–1035 (2005).
    • 374  Couesnon A, Pereira Y, Popoff MR: Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell. Microbiol.10,375–387 (2008).
    • 375  Matsumura T, Jin Y, Kabumoto Y et al.: The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption. Cell. Microbiol.10,355–364 (2007).
    • 376  Jin Y, Takegahara Y, Sugawara Y, Matsumura T, Fujinaga Y: Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins – differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C. Microbiology155,35–45 (2009).
    • 377  Wellhöner HH: Clostridial toxins and the central nervous system: studies on in situ tissues. In: Botulinum Neurotoxin and Tetanus Toxin. Simpson LL (Ed.). Academic Press, CA, USA, 231–253 (1989).
    • 378  Manning KA, Erichsen JT, Evinger C: Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience34,251–263 (1990).
    • 379  Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C: Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon39,27–41 (2001).
    • 380  Nishiki T, Kamata Y, Nemoto Y et al.: Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem.269,10498–10503 (1994).
    • 381  Nishiki T, Tokuyama Y, Kamata Y et al.: The high-affinity of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1B/GD1a. FEBS Lett.378,253–257 (1996).
    • 382  Jin R, Rummel A, Binz T, Brunger AT: Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature444,1092–1095 (2006).
    • 383  Rummel A, Karnath T, Henke T, Bigalke H, Binz T: Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J. Biol. Chem.279,30865–30870 (2004).
    • 384  Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER: Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell Biol.162,1293–1303 (2003).
    • 385  Dong M, Yeh F, Tepp WH et al.: SV2 is the protein receptor for botulinum neurotoxin A. Science312,592–596 (2006).
    • 386  Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T: The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett.580,2011–2014 (2006).
    • 387  Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER: Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol. Biol. Cell19,5226–5237 (2008).
    • 388  Herreros J, Lalli G, Montecucco C, Schiavo G: Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J. Neurosci.74,1941–1950 (2000).
    • 389  Herreros J, Ng T, Schiavo G: Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell12,2947–2960 (2001).
    • 390  Munro P, Kojima H, Dupont JL, Bossu JL, Poulain B, Boquet P: High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem. Biophys. Res. Commun.289,623–629 (2001).
    • 391  Rummel A, Bade S, Alves J, Bigalke H, Binz T: Two carbohydrate binding sites in the Hcc-domain of tetanus neurotoxin are required for toxicity. J. Mol. Biol.326,835–847 (2003).
    • 392  Rummel A, Eichner T, Weil T et al.: Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc. Natl Acad. Sci. USA104,359–364 (2007).
    • 393  Rummel A, Mahrhold S, Bigalke H, Binz T: The Hcc-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol. Microbiol.51,631–643 (2004).
    • 394  Tsukamoto K, Kozai Y, Ihara H et al.: Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. Microb. Pathog.44,484–493 (2008).
    • 395  Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C: The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem. Biophys. Res. Commun.380,76–80 (2009).
    • 396  Yowler BC, Schengrund CL: Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry43,9725–9731 (2004).
    • 397  Chen C, Baldwin MR, Barbieri JT: Molecular basis for tetanus toxin coreceptor interactions. Biochemistry47,7179–7186 (2008).
    • 398  Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G: The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol.11,431–437 (2003).
    • 399  Lalli G, Schiavo G: Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neutrophin receptor p75NTR. J. Cell Biol.156,233–239 (2002).
    • 400  Bohnert S, Deinhardt K, Salinas S, Schiavo G: Uptake and transport of clostridium neurotoxins. In: The Sourcebook of Comprehensive Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier Academic Press, Amsterdam, The Netherlands, 390–408 (2006).
    • 401  Bohnert S, Schiavo G: Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. 280(51),42336–42344 (2005).
    • 402  Deinhardt K, Berminghausen O, Willison HJ, Hopkins CR, Schiavo G: Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J. Cell Biol.174,459–471 (2006).
    • 403  Deinhardt K, Salinas S, Verastegui C et al.: Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron52,293–305 (2006).
    • 404  Li Y, Foran P, Lawrence G et al.: Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways. J. Biol. Chem.276,31394–31401 (2001).
    • 405  Maskos U, Kissa K, St Cloment C, Brulet P: Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice. Proc. Natl Acad. Sci. USA99,10120–10125 (2002).
    • 406  Galloux M, Vitrac H, Montagner C et al.: Membrane interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J. Biol. Chem.283,27668–27676 (2008).
    • 407  Koriazova LK, Montal M: Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat. Struct. Biol.10,13–18 (2003).
    • 408  Fischer A, Montal M: Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J. Biol. Chem.282,29604–29611 (2007).
    • 409  Montal M: Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Toxicon54(5),565–569 (2008).
    • 410  Ratts R, Trujillo C, Bharti A, van der Spek J, Harrison R, Murphy JR: A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol. Proc. Natl Acad. Sci. USA102,15635–15640 (2005).
    • 411  Bhalla A, Chicka MC, Tucker WC, Chapman ER: Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol.13,323–330 (2006).
    • 412  Tucker WC, Weber T, Chapman ER: Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science304,435–438 (2004).
    • 413  Sakaba T, Stein A, Jahn R, Neher E: Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science309,491–494 (2005).
    • 414  Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, Martin TF: Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol. Biol. Cell19,5093–5103 (2008).
    • 415  Gerona RR, Larsen EC, Kowalchyk JA, Martin TF: The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem.275,6328–6336 (2000).
    • 416  Poulain B, Stiles BG, Popoff MR, Molgo J: Attack of the nervous system by clostridial toxins: physical findings, cellular and molecular actions. In: The Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 348–389 (2006).
    • 417  Foran PG, Mohammed N, Lisk GO et al.: Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, and E F compared with the long lasting type A. J. Biol. Chem.278,1363–1371 (2003).
    • 418  O’Sullivan GA, Mohammed N, Foran PG, Lawrence GW, Dolly JO: Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. J. Biol. Chem.274,36897–36904 (1999).
    • 419  Keller JE, Neale EA, Oyler G, Adler M: Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett.456,137–142 (1999).
    • 420  Fernandez-Salas E, Steward LE, Ho H et al.: Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc. Natl Acad. Sci. USA101,3208–3213 (2004).
    • 421  Bajohrs M, Rickman C, Binz T, Davletov B: A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep.5,1090–1095 (2004).
    • 422  Jankovic J: Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatr.75,951–957 (2004).
    • 423  Bihidayasiri R, Truong DD: Expanding use of botulinum toxin. J. Neurol. Sci.235,1–9 (2005).
    • 424  Smith CP, Somogyi GT, Boone TB: Botulinum toxin in urology: evaluation using an evidence-based medicine approach. Nat. Clin. Pract. Urol.1,31–37 (2004).
    • 425  Juzans P, Comella JX, Molgo J, Faille L, Angaut-Petit D: Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle. Neuromusc. Disord.6,177–185 (1996).
    • 426  de Paiva A, Meunier F, Molgo J, Aoki KR, Dolly JO: Functional repair of motor endpates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl Acad. Sci. USA96,3200–3205 (1999).
    • 427  Meunier FA, Lisk G, Sesardic D, Dolly JO: Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol. Cell. Neurosci.22,454–466 (2003).
    • 428  Morbiato L, Carli L, Johnson EA, Montecucco C, Molgo J, Rossetto O: Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur. J. Neurosci.25,2697–2704 (2007).
    • 429  Stevens DL, Titball RW, Jepson M, Bayer CR, Hayes-Schroer SM, Bryant AE: Immunization with the C-domain of α-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens.J. Infect. Dis.190,767–773 (2004).
    • 430  Baldwin MR, Tepp WH, Przedpelski A et al.: Subunit vaccine against the seven serotypes of botulism. Infect. Immun.76,1314–1318 (2008).
    • 431  Tavallaie M, Chenal A, Gillet D et al.: Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies. FEBS Lett.572,299–306 (2004).
    • 432  Aktories K: Toxins as tools. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 976–990 (2006).
    • 433  Perier A, Chenal A, Babon A, Ménez A, Gillet D: Engineering of bacterial toxins for research and medicine. In: The Comprehensive Source Book of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 991–1007 (2006).
    • 434  Figueiredo DM, Hallewell RA, Chen LL et al.: Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous sytem neurons by retrograde axonal transport. Exp. Neurol.145,546–554 (1997).
    • 435  Kominsky SL, Vali M, Korz D et al.: Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am. J. Pathol.164,1627–1633 (2004).
    • 436  Michl P, Buchholz M, Rolke M et al.: Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterology121,678–684 (2001).
    • 437  Jolivet-Reynaud C, Estrada J, West LA, Alouf JE, Chedid L: Targeting of GM2-bearing tumor cells with the cytolytic Clostridium perfringens δ toxin. Anti Cancer Drugs4,65–75 (1993).
    • 438  Hirschberg H, Zhang MJ, Gach HM et al.: Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens ε prototoxin. J. Neurooncol. (2009) (Epub ahead of print).
    • 439  Anne C, Turcaud S, Blommaert AG, Darchen F, Johnson EA, Roques BP: Partial protection against botulinum B neurotoxin-induced blocking of exocytosis by a potent inhibitor of its metallopeptidase activity. Chembiochem6,1375–1380 (2005).
    • 440  Sukonpan C, Oost T, Goodnough M, Tepp W, Johnson EA, Rich DH: Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease. J. Pept. Res.63,181–193 (2004).
    • 441  Couesnon A, Shimizu T, Popoff MR: Differential entry of botulinum neurotoxin A into neuronal and intestinal cells. Cell. Microbiol.11,289–308 (2009).
    • 442  Titball RW, Basak AK: Membrane-damaging and cytotoxic phospholipases. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 516–534 (2006).
    • 443  Brynestad S, Granum PE: Clostridium perfringens and foodborne infections. Int. J. Food Microbiol.74,195–202 (2002).
    • 444  Smedley JG 3rd, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA: The enteric toxins of Clostridium perfringens.Rev. Physiol. Biochem. Pharmacol.152,183–204 (2004).
    • 445  Jestin A, Popoff MR, Mahe S: Epizootiologic investigations of a diarrheic syndrom in fattening pigs. Am. J. Vet. Res.10,2149–2151 (1985).
    • 446  Miwa N, Nishina T, Kubo S, Atsumi M: Most probable number method combined with nested polymerase chain reaction for detection and enumeration of enterotoxigenic Clostridium perfringens in intestinal contents of cattle, pig and chicken. J. Vet. Med. Sci.59,89–92 (1997).
    • 447  Collins JE, Bergeland ME, Bouley D, Ducommun AL, Francis DH, Yeske P: Diarrhea associated with Clostridium perfringens type A enterotoxin in neonatal pigs. J. Vet. Diagn. Invest.1,351–353 (1989).
    • 448  Lindsay JA, Mach AS, Wilkinson MA et al.: Clostridium perfringens type A cytotoxic-enterotoxin(s) as triggers for death in the sudden infant death syndrome: development of a toxico-infection hypothesis. Curr. Microbiol.27,51–59 (1993).
    • 449  Lawrence G: The pathogenesis of pig-bel in Papua New Guinea. 1979. PNG Med. J.48,39–49 (2005).
    • 450  Hatheway CL: Toxigenic clostridia. Clin. Microbiol. Rev.3,66–98 (1990).
    • 451  Uzal FA, Kelly WR: Enterotoxaemia in goats. Vet. Res. Commun.20,481–492 (1996).
    • 452  Scholes SF, Welchman Dde B, Hutchinson JP, Edwards GT, Mitchell ES: Clostridium perfringens type D enterotoxaemia in neonatal lambs. Vet. Rec.160,811–812 (2007).
    • 453  Rings DM: Clostridial disease associated with neurologic signs: tetanus, botulism, and enterotoxemia. Vet. Clin. North Am. Food Anim. Pract.20,379–391, vii–viii (2004).
    • 454  Songer JG, Miskimmins DW: Clostridium perfringens type E enteritis in calves: two cases and a brief review of the literature. Anaerobe10,239–242 (2004).
    • 455  Baskerville M, Wood M, Seamer JH: Clostridium perfringens type E enterotoxaemia in rabbits. Vet. Rec.107,18–19 (1980).
    • 456  Kuijper E, de Weendt J, Kato H et al.: Nosocomial outbreak of Clostridium difficile-associated diarrhea due to a clindamycin-resistant enterotoxin A-negative strain. Eur. J. Clin. Microbiol. Infect. Dis.20,528–534 (2001).
    • 457  Songer JG, Anderson MA: Clostridium difficile: an important pathogen of food animals. Anaerobe12,1–4 (2006).
    • 458  Valiquette L, Low DE, Pepin J, McGeer A: Clostridium difficile infection in hospitals: a brewing storm. CMAJ171,27–29 (2004).
    • 459  Weese JS, Toxopeus L, Arroyo L: Clostridium difficile associated diarrhoea in horses within the community: predictors, clinical presentation and outcome. Equine Vet. J.38,185–188 (2006).
    • 460  Oldfield EC 3rd: Clostridium difficile-associated diarrhea: resurgence with a vengeance. Rev. Gastroenterol. Disord.6,79–96 (2006).
    • 461  Goorhuis A, Bakker D, Corver J et al.: Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin. Infect. Dis.47,1162–1170 (2008).
    • 462  Songer JG, Uzal FA: Clostridial enteric infections in pigs. J. Vet. Diagn. Invest.17,528–536 (2005).
    • 463  Hookman P, Barkin JS: Clostridium difficile associated infection, diarrhea and colitis. World J. Gastroenterol.15,1554–1580 (2009).
    • 464  McFarland LV: Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol.3,563–578 (2008).
    • 465  Kuijper EJ, Coignard B, Tull P: Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect.12(Suppl. 6),2–18 (2006).
    • 466  Chew SS, Lubowski DZ: Clostridium septicum and malignancy. ANZ J. Surg.71,647–649 (2001).
    • 467  Kornbluth AA, Danzig JB, Bernstein LH: Clostridium septicum infection and associated malignancy report of two cases and review of the literature. Medicine (Baltimore)68,30–37 (1989).
    • 468  Schamber GJ, Berg IE, Molesworth JR: Braxy or bradsot-like abomastitis caused by Clostridium septicum in a calf. Can. Vet. J.27,194 (1986).
    • 469  Borriello SP: Clostridial disease of the gut. Clin. Infect. Dis.20(Suppl. 2),S242–S250 (1995).
    • 470  Borriello SP, Carman RJ: Association of ι-like toxin and Clostridium spiroforme with both spontaneous and antibiotic-associated diarrhea and colitis in rabbits. J. Clin. Microbiol.17,414–418 (1983).
    • 471  Domingo RM, Haller JS, Gruenthal M: Infant botulism: two recent cases and literature review. J. Child Neurol.23,1336–1346 (2008).
    • 472  Fu SW, Wang CH: An overview of type E botulism in China. Biomed. Environ. Sci.21,353–356 (2008).
    • 473  Brook I: Infant botulism. J. Perinatol.27,175–180 (2007).
    • 474  Sobel J: Botulism. Clin. Infect. Dis.41,1167–1173 (2005).
    • 475  McLauchlin J, Grant KA, Little CL: Food-borne botulism in the United Kingdom. J. Public Health (Oxf.)28,337–342 (2006).
    • 476  Aureli P, Giovanna F, Pourshaban M: Foodborne botulism in Italy. Lancet348,1594 (1996).
    • 477  Eklund MW, Dowell J: Avian Botulism. Charles C Thomas, Springfield, IL, USA (1987).
    • 478  Smart JL: Type C botulism in intensively farmed turkeys. Vet. Rec.113,198–200 (1983).
    • 479  Smart JL, Roberts TA: An outbreak of type C botulism in broiler chickens. Vet. Rec.100,378–380 (1977).
    • 480  Degernes LA: Waterfowl toxicology: a review. Vet. Clin. North Am. Exot. Anim. Pract.11,283–300, vi (2008).
    • 481  Gerber V, Straub R, Frey J: Equine botulism and acute pasture myodystrophy: new soil-borne emerging diseases in Switzerland?. Schweiz. Arch. Tierheilkd.148,553–559 (2006).
    • 482  Galey FD: Botulism in the horse. Vet. Clin. North Am. Equine Pract.17,579–588 (2001).
    • 483  Wobeser G: Avian botulism – another perspective. J. Wildl. Dis.33,181–186 (1997).
    • 484  Whitlock RH, Buckley C: Botulism. Vet. Clin. North Am. Equine Pract.13,107–128 (1997).
    • 485  Bongers JH, Tetenburg GJ: Botulism in waterfowl. Vet. Q.18(Suppl. 3),S156–S157 (1996).
    • 486  Bergert H, Illert T, Friedrich K, Ockert D: Fulminant liver failure following infection by Clostridium perfringens. Surg. Infect. (Larchmt)5,205–209 (2004).
    • 487  Temple AM, Thomas NJ: Gas gangrene secondary to Clostridium perfringens in pediatric oncology patients. Pediatr. Emerg. Care20,457–459 (2004).
    • 488  Halpin TF, Molinari JA: Diagnosis and management of clostridium perfringens sepsis and uterine gas gangrene. Obstet. Gynecol. Surv.57,53–57 (2002).
    • 489  Present DA, Meislin R, Shaffer B: Gas gangrene. A review. Orthop. Rev.19,333–341 (1990).
    • 490  Rood JI: Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol.52,333–360 (1998).
    • 491  O’Rourke F, Sharrock K, Pelly M: Clostridium septicum: a malignant pathogen. J. Infect.41,286–288 (2000).
    • 492  Smith-Slatas CL, Bourque M, Salazar JC: Clostridium septicum infections in children: a case report and review of the literature. Pediatrics117,e796–e805 (2006).
    • 493  Barnham M, Weightman N: Clostridium septicum infection and hemolytic uremic syndrome. Emerg. Infect. Dis.4,321–324 (1998).
    • 494  Dirks C, Horn H, Christensen L, Pedersen C: CNS infection with Clostridium septicum.Scand. J. Infect. Dis.32,320–322 (2000).
    • 495  Stevens DL, Musher DM, Watson DA et al.: Spontaneous, nontraumatic gangrene due to Clostridium septicum.Rev. Infect. Dis.12,286–296 (1990).
    • 496  Clostridium sordellii toxic shock syndrome after medical abortion with mifepristone and intravaginal misoprostol – United States and Canada, 2001–2005. MMWR Morb. Mortal. Wkly Rep.54,724(2005).
    • 497  Miech RP: Pathophysiology of mifepristone-induced septic shock due to Clostridium sordellii. Ann. Pharmacother.39,1483–1488 (2005).
    • 498  Wiebe E, Guilbert E, Jacot F, Shannon C, Winikoff B: A fatal case of Clostridium sordellii septic shock syndrome associated with medical abortion. Obstet. Gynecol.104,1142–1144 (2004).
    • 499  Kimura AC, Higa JI, Levin RM, Simpson G, Vargas Y, Vugia DJ: Outbreak of necrotizing fasciitis due to Clostridium sordellii among black-tar heroin users. Clin. Infect. Dis.38,e87–e91 (2004).
    • 500  Sinave C, Le Templier G, Blouin D, Leveille F, Deland E: Toxic shock syndrome due to Clostridium sordellii: a dramatic postpartum and postabortion disease. Clin. Infect. Dis.35,1441–1443 (2002).
    • 501  Rorbye C, Petersen IS, Nilas L: Postpartum Clostridium sordellii infection associated with fatal toxic shock syndrome. Acta Obstet. Gynecol. Scand.79,1134–1135 (2000).
    • 502  Abdulla A, Yee L: The clinical spectrum of Clostridium sordellii bacteraemia: two case reports and a review of the literature. J. Clin. Pathol.53,709–712 (2000).
    • 503  Bitti A, Mastrantonio P, Spigaglia P et al.: A fatal postpartum Clostridium sordellii associated toxic shock syndrome. J. Clin. Pathol.50,259–260 (1997).
    • 504  Cunniffe JG: Clostridium sordellii bacteraemia. J. Infect.33,127–129 (1996).
    • 505  Spera RV Jr, Kaplan MH, Allen SL: Clostridium sordellii bacteremia: case report and review. Clin. Infect. Dis.15,950–954 (1992).
    • 506  Buchman AL, Ponsillo M, Nagami PH: Empyema caused by Clostridium sordellii, a rare form of pleuropulmonary disease. J. Infect.22,171–174 (1991).
    • 507  McGregor JA, Soper DE, Lovell G, Todd JK: Maternal deaths associated with Clostridium sordellii infection. Am. J. Obstet. Gynecol.161,987–995 (1989).
    • 508  Fischer M, Bhatnagar J, Guarner J et al.: Fatal toxic shock syndrome associated with Clostridium sordellii after medical abortion. N. Engl. J. Med.353,2352–2360 (2005).
    • 509  Rushdy AA, White JM, Ramsay ME: Tetanus in England and Wales, 1984–2000. Epidemiol. Infect.130,71–77 (2003).
    • 510  Simonsen O, Bloch AV, Heron I: Epidemiology of tetanus in Denmark 1920–1982. Scand. J. Infect. Dis.19,437–444 (1987).
    • 511  Christenson B, Böttiger M: Epidemiology and immunity to tetanus in Sweden. Scand. J. Infect. Dis.19,429–435 (1987).
    • 512  Izurieta H, Sutter RW, Strebel PM et al.: Tetanus surveillance – United States, 1991–1994. MMWR Morb. Mortal. Wkly Rep.46,15–25 (1997).
    • 513  Tetanus among injecting-drug users – California, 1997. Morb. Mortal. Wkly Rep.47,149–151 (1998).
    • 514  Vandelaer J, Birminigham M, Gasse F, Kurian M, Shaw C, Garnier S: Tetanus in developing countries: an update on the maternal and neonatal tetanus elimination initiative. Vaccine21,3442–3445 (2003).
    • 515  Gibson K, Bonaventure Uwineza J, Kiviri W, Parlow J: Tetanus in developing countries: a case series and review. Can. J. Anaesth.56,307–315 (2009).
    • 516  Merson MH, Dowell RR: Epidemiologic, clinical, and laboratory aspects of wound botulism. N. Engl. J. Med.289,1005–1010 (1973).
    • 517  Brett MM, Hallas G, Mpamugo O: Wound botulism in the UK and Ireland. J. Med. Microbiol.53,555–561 (2004).
    • 518  Werner SB, Passaro D, McGee J, Schechter R, Vugia DJ: Wound botulism in California, 1951–1998: recent epidemic in heroin injectors. Clin. Infect. Dis.31,1018–1024 (2000).
    • 519  Akbulut D, Dennis J, Gent M et al.: Wound botulism in injectors of drugs: upsurge in cases in England during 2004. Euro Surveill.10,172–174 (2005).
    • 520  Kalka-Moll WM, Aurbach U, Schaumann R, Schwarz R, Seifert H: Wound botulism in injection drug users. Emerg. Infect. Dis.13,942–943 (2007).
    • 521  Burnens A: Cases of wound botulism in Switzerland. Euro Surveill.4,n5 (2000).
    • 522  Alouf JE, Geoffroy C: The family of the antigenically-related cholesterol-binding (‘sulphydryl-activated’) cytolytic toxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Freer JH (Eds). Academic Press, London, UK, 147–186 (1991).
    • 523  Alouf JE: Cholesterol-binding cytolytic protein toxins. Int. J. Med. Microbiol.290,351–356 (2000).
    • 524  Basak A, Popoff MR, Titball RW, Cole AR: Clostridium perfringens ε-toxin. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 631–642 (2006).
    • 525  McClane BA: Clostridium perfringens enterotoxin. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Alouf JE, Popoff MR (Eds). Elsevier, Academic Press, Amsterdam, The Netherlands, 763–778 (2006).
    • 526  Titball RW, Rood JI: Bacterial phospholipases. In: Bacterial Protein Toxins. Aktories K, Just I (Eds). Springer, Berlin, Germany, 529–556 (2000).
    • 527  Chaves-Olarte E, Low P, Freer P et al.: A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial toxins. J. Biol. Chem.274,11046–11052 (1999).