We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii

    Seetha Lakshmi Rajangam

    Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India

    &
    Manoj Kumar Narasimhan

    *Author for correspondence:

    E-mail Address: manojbiopharma@gmail.com

    Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India

    Published Online:https://doi.org/10.2217/fmb-2023-0263

    A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.

    Plain language summary

    Acinetobacter baumannii is a type of bacteria that spreads quickly in the hospital environment. It is extremely dangerous, as it can form protective communities on the surface of medical devices, known as a biofilm. Biofilms can affect the ability of antibiotics to kill the bacteria. This review looks at how A. baumannii forms biofilms and ways that biofilms can be disrupted to kill the bacteria.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. (IDSA) IDS of A. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 2011;52:S397–S428.
    • 2. Scholtz V, Vaňková E, Kašparová P et al. Non-thermal plasma treatment of ESKAPE pathogens: a review. Front. Microbiol. 2021;12:737635.
    • 3. Karlowsky JA, Hoban DJ, Hackel MA et al. Antimicrobial susceptibility of Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia–Pacific countries: SMART 2013–2015. J. Med. Microbiol. 2017;66:61–69.
    • 4. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed. Res. Int. 2016;2016:2475067.
    • 5. Llaca-Díaz JM, Mendoza-Olazarán S, Camacho-Ortiz A et al. One-year surveillance of ESKAPE pathogens in an intensive care unit of Monterrey, Mexico. Chemotherapy 2013;58:475–481.
    • 6. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008;36:309–332.
    • 7. Dudeck MA, Weiner LM, Allen-Bridson K et al. National Healthcare Safety Network (NHSN) report, data summary for 2012, device-associated module. Am. J. Infect. Control. 2013;41:1148–1166.
    • 8. Rello J, Sonora R, Jubert P et al. Pneumonia in intubated patients: role of respiratory airway care. Am. J. Respir. Crit. Care Med. 1996;154:111–115.
    • 9. Choi JY, Kwak YG, Yoo H et al. Trends in the distribution and antimicrobial susceptibility of causative pathogens of device-associated infection in Korean intensive care units from 2006 to 2013: results from the Korean Nosocomial Infections Surveillance System (KONIS). J. Hosp. Infect. 2016;92:363–371.
    • 10. Icmr. Annual Report 2021: Antimicrobial Resistance Research and Surveillance Network. 2021. https://main.icmr.nic.in/sites/default/files/upload_documents/AMR_Annual_Report_2021.pdf
    • 11. Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect. Dis. 2008;8:751–762.
    • 12. Rangel K, Chagas TPG, De-Simone SG. Acinetobacter baumannii infections in times of COVID-19 pandemic. Pathogens 2021;10:1006.
    • 13. Li J, Wang J, Yang Y et al. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrob. Resist. Infect. Control 2020;9:1–7.
    • 14. Sathyakamala R, Peace AR, Shanmugam P. A comparative study on bacterial co-infections and prevalence of multidrug resistant organisms among patients in COVID and non-COVID intensive care units. J. Prev. Med. Hyg. 2022;63:E19.
    • 15. Hafiz TA, Alghamdi SS, Mubaraki MA et al. A two-year retrospective study of multidrug-resistant Acinetobacter baumannii respiratory infections in critically Ill patients: clinical and microbiological findings. J. Infect. Public Health 2023;16:313–319.
    • 16. Jamal M, Ahmad W, Andleeb S et al. Bacterial biofilm and associated infections. J. Chinese Med. Assoc. 2018;81:7–11.
    • 17. Olson PD, Hunstad DA. Subversion of host innate immunity by uropathogenic Escherichia coli. Pathogens 2016;5:2.
    • 18. Donlan RM. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 2002;8:881.
    • 19. Kovács ÁT, van Gestel J, Kuipers OP. The protective layer of biofilm: a repellent function for a new class of amphiphilic proteins. Mol. Microbiol. 2012;85:8–11.
    • 20. Uruén C, Chopo-Escuin G, Tommassen J et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 2020;10:3.
    • 21. Gedefie A, Demsis W, Ashagrie M et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect Drug Resist. 2021;3711–3719.
    • 22. Rello J, Sonora R, Jubert P et al. Pneumonia in intubated patients: role of respiratory airway care. Am. J. Respir. Crit. Care Med. 1996;154:111–115.
    • 23. Jackson-Litteken CD, Di Venanzio G, Le N-H et al. InvL, an invasin-like adhesin, is a type II secretion system substrate required for Acinetobacter baumannii uropathogenesis. mBio. 2022;13(3):e00258–22.
    • 24. Abdi-Ali A, Hendiani S, Mohammadi P et al. Assessment of biofilm formation and resistance to imipenem and ciprofloxacin among clinical isolates of Acinetobacter baumannii in Tehran. Jundishapur J. Microbiol. 2014;7(1):e8606.
    • 25. Choe H, Tatro JM, Hausman BS et al. Staphylococcus aureus and Acinetobacter baumannii inhibit osseointegration of orthopedic implants. Infect. Immun. 2022;90:e00669–21.
    • 26. Di Venanzio G, Flores-Mireles AL, Calix JJ et al. Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nat. Commun. 2019;10:1–13.
    • 27. Upmanyu K, Haq QMR, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: opportunities for developing therapeutics. Curr. Res. Microb. Sci. 2022;3:100131.
    • 28. Bales PM, Renke EM, May SL et al. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLOS ONE 2013;8:e67950.
    • 29. Sahu PK, Iyer PS, Barage SH et al. Characterization of the algC gene expression pattern in the multidrug resistant Acinetobacter baumannii AIIMS 7 and correlation with biofilm development on abiotic surface. Scient. World J. 2014;2014:593546.
    • 30. Jin JS, Kwon S-O, Moon DC et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLOS ONE 2011;6:e17027.
    • 31. Beveridge TJ. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999;181:4725–4733.
    • 32. Lee JS, Lee JC, Lee C-M et al. Outer membrane protein A of Acinetobacter baumannii induces differentiation of CD4+ T cells toward a Th1 polarizing phenotype through the activation of dendritic cells. Biochem. Pharmacol. 2007;74:86–97.
    • 33. López-Leal G, Zuniga-Moya JC, Castro-Jaimes S et al. Unexplored genetic diversity of multidrug-and extremely drug-resistant Acinetobacter baumannii isolates from tertiary hospitals in Honduras. Microb. Drug Resist. 2019;25:690–695.
    • 34. Tsai Y-K, Liou C-H, Lin J-C et al. Effects of different resistance mechanisms on antimicrobial resistance in Acinetobacter baumannii: a strategic system for screening and activity testing of new antibiotics. Int. J. Antimicrob. Agents 2020;55:105918. • This work explains the resistance mechanism of 50 genetically engineered A. baumannii strains. This study also evaluates the compounds that specified antimicrobial resistance.
    • 35. Ries JI, Heß M, Nouri N et al. CipA mediates complement resistance of Acinetobacter baumannii by formation of a factor I-dependent quadripartite assemblage. Front. Immunol. 2022;13:942482. • Reports the novel Factor I-dependent mechanisms of complement inactivation mediated by CipA of A. baumannii.
    • 36. Groisman EA. Feedback control of two-component regulatory systems. Annu. Rev. Microbiol. 2016;70:103–124.
    • 37. Kim SY, Kim MH, Kim S Il et al. The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii. BMC Microbiol. 2019;19:1–13.
    • 38. Kim H-J, Kim N-Y, Ko S-Y et al. Complementary regulation of BfmRS two-component and AbaIR quorum sensing systems to express virulence-associated genes in Acinetobacter baumannii. Int. J. Mol. Sci. 2022;23:13136.
    • 39. Cerqueira GM, Kostoulias X, Khoo C et al. A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J. Infect. Dis. 2014;210:46–55.
    • 40. Liou M-L, Soo P-C, Ling S-R et al. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii. J. Microbiol. Immunol. Infect. 2014;47:275–281.
    • 41. Tomaras AP, Dorsey CW, Edelmann RE et al. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology (N Y) 2003;149:3473–3484.
    • 42. Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J. Bacteriol. 2008;190:1036–1044.
    • 43. Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 2009;77:3150–3160.
    • 44. Choi CH, Lee JS, Lee YC et al. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol. 2008;8:1–11.
    • 45. Choi AHK, Slamti L, Avci FY et al. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol. 2009;191:5953–5963.
    • 46. Bi Y, Hubbard C, Purushotham P et al. Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr. Opin. Struct. Biol. 2015;34:78–86.
    • 47. Flannery A, Le Berre M, Pier GB et al. Glycomics microarrays reveal differential in situ presentation of the biofilm polysaccharide poly-N-acetylglucosamine on Acinetobacter baumannii and Staphylococcus aureus cell surfaces. Int. J. Mol. Sci. 2020;21:2465.
    • 48. Geisinger E, Isberg RR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog. 2015;11:e1004691.
    • 49. Cirioni O, Silvestri C, Ghiselli R et al. Therapeutic efficacy of buforin II and rifampin in a rat model of Acinetobacter baumannii sepsis. Crit. Care Med. 2009;37:1403–1407.
    • 50. Jiang Z, Vasil AI, Gera L et al. Rational design of α-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem. Biol. Drug Des. 2011;77:225–240.
    • 51. Wortham BW, Oliveira MA, Patel CN. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Genus Yersinia: From Genom. Funct. 2007;106–115.
    • 52. Barbagallo M, Di Martino ML, Marcocci L et al. A new piece of the Shigella pathogenicity puzzle: spermidine accumulationby silencing of the speG gene. PLOS ONE 2011;6:e27226.
    • 53. Fang S-B, Huang C-J, Huang C-H et al. speG is required for intracellular replication of Salmonella in various human cells and affects its polyamine metabolism and global transcriptomes. Front. Microbiol. 2017;8:2245.
    • 54. Armalytė J, Čepauskas A, Šakalytė G et al. A polyamine acetyltransferase regulates the motility and biofilm formation of Acinetobacter baumannii. Nat. Commun. 2023;14:3531. • The findings of this work shows that A. baumannii encodes a novel acetyltransferase, Dpa, that acetylates 1,3-diaminopropane, directly affecting the bacterium motility and influencing the biofilm formation and adhesion on biotic and abiotic surfaces.
    • 55. Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 2008;5:598–608.
    • 56. Høiby N, Bjarnsholt T, Givskov M et al. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob Agents 2010;35:322–332.
    • 57. Greene C, Wu J, Rickard AH et al. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett. Appl. Microbiol. 2016;63:233–239.
    • 58. El-Shazly S, Dashti A, Vali L et al. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. Int. J. Infect. Dis. 2015;41:42–49.
    • 59. Sechi LA, Karadenizli A, Deriu A et al. PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion. Med. Sci. Monit. 2004;10:BR180–184.
    • 60. Yang C-H, Su P-W, Moi S-H et al. Biofilm formation in Acinetobacter Baumannii: genotype-phenotype correlation. Molecules 2019;24:1849.
    • 61. Skerniškytė J, Karazijaitė E, Deschamps J et al. Blp1 protein shows virulence-associated features and elicits protective immunity to Acinetobacter baumannii infection. BMC Microbiol. 2019;19:1–12.
    • 62. Lee H-W, Koh YM, Kim J et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin. Microbiol. Infect. 2008;14:49–54.
    • 63. Rao RS, Karthika RU, Singh SP et al. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J. Med. Microbiol. 2008;26:333–337.
    • 64. Bhargava N, Singh SP, Sharma A et al. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol. 2015;10:1953–1968.
    • 65. Subhadra B, Oh MH, Choi CH. Quorum sensing in Acinetobacter: with special emphasis on antibiotic resistance, biofilm formation and quorum quenching. AIMS Microbiol. 2016;2:27–41.
    • 66. Sun X, Ni Z, Tang J et al. The abaI/abaR quorum sensing system effects on pathogenicity in Acinetobacter baumannii. Front. Microbiol. 2021;12:679241.
    • 67. Moon KH, Weber BS, Feldman MF. Subinhibitory concentrations of trimethoprim and sulfamethoxazole prevent biofilm formation by Acinetobacter baumannii through inhibition of Csu pilus expression. Antimicrob. Agents Chemother. 2017;61:10–1128.
    • 68. Subhadra B, Surendran S, Lim BR et al. Complete genome sequence and phylogenetic analysis of nosocomial pathogen Acinetobacter nosocomialis strain NCTC 8102. Genes Genom. 2019;41:1063–1075.
    • 69. Guo HN, Xiang J. Influences of abaR gene on biofilm formation of Acinetobacter baumannii. Zhonghua Shao Shang Za Zhi. 2017;33:200–205.
    • 70. López-Martín M, Dubern J-F, Alexander MR et al. Abam regulates quorum sensing, biofilm formation, and virulence in Acinetobacter baumannii. J. Bacteriol. 2021;203:10–1128.
    • 71. Anbazhagan D, Mansor M, Yan GOS et al. Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLOS ONE 2012;7:e36696.
    • 72. Fiester SE, Actis LA. Stress responses in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol. 2013;8:353–365.
    • 73. Sheldon JR, Skaar EP. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog. 2020;16:e1008995.
    • 74. Gaddy JA, Arivett BA, McConnell MJ et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect. Immun. 2012;80:1015–1024.
    • 75. Hatefi Oskuei R, Darvish Alipour Astaneh S, Rasooli I. A conserved region of Acinetobacter trimeric autotransporter adhesion, Ata, provokes suppression of Acinetobacter baumannii virulence. Arch. Microbiol. 2021;203:3483–3493.
    • 76. Tomaras AP, Flagler MJ, Dorsey CW et al. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology (NY) 2008;154:3398–3409.
    • 77. He X, Lu F, Yuan F et al. Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob. Agents Chemother. 2015;59:4817–4825.
    • 78. De Gregorio E, Del Franco M, Martinucci M et al. Biofilm-associated proteins: news from Acinetobacter. BMC Genom. 2015;16:1–14.
    • 79. Ramezanalizadeh F, Owlia P, Rasooli I. Type I pili, CsuA/B and FimA induce a protective immune response against Acinetobacter baumannii. Vaccine 2020;38:5436–5446.
    • 80. Giardina BJ, Shahzad S, Huang W et al. Heme uptake and utilization by hypervirulent Acinetobacter baumannii LAC-4 is dependent on a canonical heme oxygenase (abHemO). Arch. Biochem. Biophys. 2019;672:108066.
    • 81. Camarena L, Bruno V, Euskirchen G et al. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010;6:e1000834.
    • 82. Jacobs AC, Hood I, Boyd KL et al. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect. Immun. 2010;78:1952–1962.
    • 83. Das T, Paino D, Manoharan A et al. Conditions under which glutathione disrupts the biofilms and improves antibiotic efficacy of both ESKAPE and non-ESKAPE species. Front. Microbiol. 2019;10:2000.
    • 84. Mayer C, Muras A, Parga A et al. Quorum sensing as a target for controlling surface associated motility and biofilm formation in Acinetobacter baumannii ATCC® 17978TM. Front. Microbiol. 2020;11:565548.
    • 85. Chow JY, Yang Y, Tay SB et al. Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob. Agents Chemother. 2014;58:1802–1805.
    • 86. Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr. Microbiol. 2014;68:635–641.
    • 87. Lood R, Winer BY, Pelzek AJ et al. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob. Agents Chemother. 2015;59:1983–1991.
    • 88. Ouslimani S, Bendahou M, Abedelmounaim K et al. Antibacterial and anti-biofilm efficiency of twenty Algerian plants essential oils against resistant Acinetobacter baumannii. J. Essent. Oil Bear. Plants 2023;26:206–231. •• Reported the antibacterial and antibiofilm properties of 20 essential oil derived from Algerian plants against MDR and XDR A. baumannii.
    • 89. Slobodníková L, Fialová S, Rendeková K et al. Antibiofilm activity of plant polyphenols. Molecules. 2016;21:1717.
    • 90. Bodet C, Grenier D, Chandad F et al. Potential oral health benefits of cranberry. Crit. Rev. Food Sci. Nutr. 2008;48:672–680.
    • 91. Raorane CJ, Lee J-H, Kim Y-G et al. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 2019;10:990.
    • 92. Valizadeh M, Beigomi M, Fazeli-Nasab B. Antibacterial and Anti biofilm effects of ethanol and aceton leaf extract of Momordica charantia and Tecomella undulata against Acinetobacter baumannii. Int. J. Adv. Biol. Biomed. Res. 2020;8:403–418.
    • 93. Meccatti VM, Martins KMC, Ramos L de P et al. Synergistic antibiofilm action of cinnamomum verum and Brazilian green propolis hydroethanolic extracts against multidrug-resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa and their biocompatibility on human keratinocytes. Molecules 2023;28:6904.
    • 94. Wenjun W. Antibacterial effect of chitosan-modified Fe3O4 nanozymes on Acinetobacter baumannii. J. Microbiol. Biotechnol. 2022;32:263. •• This is the first in vitro study demonstrating that chitosan-modified Fe3O4 potentially inhibits the growth of drug-resistant A. baumannii.
    • 95. Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020;9:24.
    • 96. Hetta HF, Al-Kadmy IMS, Khazaal SS et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2021;11:10751.
    • 97. Neethu S, Midhun SJ, Radhakrishnan EK et al. Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microb. Pathog. 2020;138:103832.
    • 98. Shahbazi S, Shivaee A, Nasiri M et al. Zinc oxide nanoparticles impact the expression of the genes involved in toxin–antitoxin systems in multidrug-resistant Acinetobacter baumannii. J. Basic Microbiol. 2023;63:1007–1015. •• Showed that the ZnO-nanoparticles potentially impact the expression of the genes involved in toxin-antitoxin systems of MDR A. baumannii which is useful for target-based strategies toward MDR pathogens for clinical applications.
    • 99. Khanna C, Vashistt J. Exploring biofilm forming capacity of A. baumannii from different clinical sources and screening copper nanoparticles for antibiofilm activity [Bachelor's Thesis] . India: Jaypee University of Information Technology; 2017.
    • 100. Cochis A, Azzimonti B, Della Valle C et al. The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii. Biomaterials 2016;80:80–95.
    • 101. Uroz S, Dessaux Y, Oger P. Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem. 2009;10:205–216.
    • 102. Bzdrenga J, Daude D, Remy B et al. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. 2017;267:104–115.
    • 103. Zhao X, Yu Z, Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 2020;8:425.
    • 104. Junter G-A, Thébault P, Lebrun L. Polysaccharide-based antibiofilm surfaces. Acta Biomater. 2016;30:13–25.
    • 105. de Freitas SB, Hartwig DD. Promising targets for immunotherapeutic approaches against Acinetobacter baumannii. Microb. Pathog. 2022;173:105855.
    • 106. Mayer C, Muras A, Romero M et al. Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978. Front. Cell Infect. Microbiol. 2018;8:310.
    • 107. Krzyżek P. Challenges and limitations of anti-quorum sensing therapies. Front. Microbiol. 2019;10:2473.
    • 108. Asadi A, Razavi S, Talebi M et al. A review on anti-adhesion therapies of bacterial diseases. Infection 2019;47:13–23.
    • 109. Liu G, Huang Y, Reis FS et al. Impact of nutritional and environmental factors on inflammation, oxidative stress, and the microbiome 2019. Biomed. Res. Int. Hindawi 2019;2019:5716241.
    • 110. Huan Y, Kong Q, Mou H et al. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 2020;11:2559.
    • 111. Kakasis A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int. J. Antimicrob. Agents 2019;53:16–21.
    • 112. Luong HX, Ngan HD, Thi Phuong HB et al. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. R. Soc. Open Sci. 2022;9:211583.
    • 113. Lee D-K, Bhunia A, Kotler SA et al. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry 2015;54:1897–1907.
    • 114. Feng X, Sambanthamoorthy K, Palys T et al. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides (NY). 2013;49:131–137.
    • 115. Zarei-Mehrvarz E, Fahimirad S, Ghaznavi-Rad E et al. The LL-37 antimicrobial peptide as a treatment for systematic infection of Acinetobacter baumannii in a mouse model. Protein Pept. Lett. 2023;30:44–53. •• In vivo results of the study represented a potential of LL37 in the treatment of systematically infected mouse models, and all infected mice treated with LL37 protein survived without a trace of bacteria in their blood samples.
    • 116. Guo Y, Xun M, Han J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine 2018;97(42):e12832.
    • 117. Stansly PG. Polymyxin: a new chemotherapeutic agent. Bull. Johns Hopkins Hosp. 1947;81:43.
    • 118. Jung C-J, Liao Y-D, Hsu C-C et al. Identification of potential therapeutic antimicrobial peptides against Acinetobacter baumannii in a mouse model of pneumonia. Sci. Rep. 2021;11:7318.
    • 119. Wang J, Yadav V, Smart AL et al. Stability of peptide drugs in the colon. Europ. J. Pharmaceut. Sci. 2015;78:31–36.
    • 120. Howard-Jones AR, Iredell JR, Khatami A. Phage therapy in pediatrics: the way forward for difficult-to-treat infections? Expert. Rev. Anti Infect Ther. 2022;20:487–491.
    • 121. Li Y, Xiao S, Huang G. Acinetobacter baumannii bacteriophage: progress in isolation, genome sequencing, preclinical research, and clinical application. Curr. Microbiol. 2023;80:199.
    • 122. Hibstu Z, Belew H, Akelew Y et al. Phage therapy: a different approach to fight bacterial infections. Biologics 2022;16:173–186.
    • 123. Wang J-L, Kuo C-F, Yeh C-M et al. Efficacy of φkm18p phage therapy in a murine model of extensively drug-resistant Acinetobacter baumannii infection. Infect. Drug Resist. 2018;11:2301–2310.
    • 124. Jeon J, Park J-H, Yong D. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol. 2019;19:1–14.
    • 125. Wintachai P, Phaonakrop N, Roytrakul S et al. Enhanced antibacterial effect of a novel Friunavirus phage vWU2001 in combination with colistin against carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2022;12:2633.
    • 126. Rouse MD, Stanbro J, Roman JA et al. Impact of frequent administration of bacteriophage on therapeutic efficacy in an A. baumannii mouse wound infection model. Front. Microbiol. 2020;11:414.
    • 127. Tsonos J, Vandenheuvel D, Briers Y et al. Hurdles in bacteriophage therapy: deconstructing the parameters. Vet. Microbiol. 2014;171:460–469.
    • 128. Ghasemi F, Jalal R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2016;6:118–122.
    • 129. Martínez-García KD, Zertuche-Arias T, Bernáldez-Sarabia J et al. Radical scavenging, hemocompatibility, and antibacterial activity against MDR Acinetobacter baumannii in alginate-based aerogels containing lipoic acid-capped silver nanoparticles. ACS Omega 2024;9:2350–2361.
    • 130. Shi X, Praphakar RA, Suganya K et al. In vivo approach of simply constructed pyrazinamide conjugated chitosan-g-polycaprolactone micelles for methicillin resistance Staphylococcus aureus. Int. J. Biol. Macromol. 2020;158:636–647.
    • 131. Kannan S, Solomon A, Krishnamoorthy G et al. Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci. Rep. 2021;11:1102.
    • 132. Muthulakshmi L, Suganya K, Murugan M et al. Antibiofilm efficacy of novel biogenic silver nanoparticles from Terminalia catappa against food-borne Listeria monocytogenes ATCC 15,313 and mechanisms investigation in-vivo and in-vitro. J. King Saud Univ. Sci. 2022;34:102083.
    • 133. Ivanov AV, Bartosch B, Isaguliants MG. Oxidative stress in infection and consequent disease. Oxid. Med. Cell Longev. Hindawi; 2017;2017:3496043.
    • 134. McNeilly O, Mann R, Hamidian M et al. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol. 2021;12:652863.
    • 135. Aljabali AA, Obeid MA, Bashatwah RM et al. Nanomaterials and their impact on the immune system. Int. J. Mol. Sci. 2023;24:2008.
    • 136. Herdiana Y, Wathoni N, Shamsuddin S et al. Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano 2022;7:100048.
    • 137. Rahman Z, Charoo NA, Akhter S et al. Nanotechnology-based drug products: science and regulatory considerations. Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology. Newyork (NY):Elsevier; 2018;16:619–655.
    • 138. Mat Rahim N, Lee H, Strych U et al. Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development. Hum. Vaccin. Immunother. 2021;17:3784–3794.
    • 139. Garcia-Quintanilla M, R Pulido M, J McConnell M. First steps towards a vaccine against Acinetobacter baumannii. Curr. Pharm. Biotechnol. 2013;14:897–902.
    • 140. Ramezanalizadeh F, Rasooli I, Owlia P et al. Vaccination with a combination of planktonic and biofilm virulence factors confers protection against carbapenem-resistant Acinetobacter baumannii strains. Sci. Rep. 2022;12:19909.
    • 141. McConnell MJ, Rumbo C, Bou G et al. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 2011;29:5705–5710.
    • 142. Ramezanalizadeh F, Owlia P, Rasooli I. Type I pili, CsuA/B and FimA induce a protective immune response against Acinetobacter baumannii. Vaccine 2020;38:5436–5446.
    • 143. Du X, Xue J, Jiang M et al. A multiepitope peptide, rOmp22, encapsulated in chitosan-PLGA nanoparticles as a candidate vaccine against Acinetobacter baumannii infection. Int. J. Nanomed. 2021;16:1819–1836.
    • 144. Mehdinejadiani K, Hashemi A, Bandehpour M et al. Evaluationof the new outer membrane protein a epitope-based vaccines for mice model of Acinetobacter baumannii associated pneumonia and sepsis infection. Iran J. Allergy Asthma Immunol. 2021;20:537–549.
    • 145. Yu NY, Wagner JR, Laird MR et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608–1615.
    • 146. Bhasin M, Garg A, Raghava GPS. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522–2524.
    • 147. Yu C, Lin C, Hwang J. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13:1402–1406.
    • 148. Shen H-B, Chou K-C. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J. Theor. Biol. 2010;264:326–333.
    • 149. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423.
    • 150. Singh H, Raghava GPS. ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001;17:1236–1237.
    • 151. Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Protein. Struct. Funct. Bioinform. 2006;65:40–48.
    • 152. Ponomarenko J, Bui H-H, Li W et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008;9:1–8.
    • 153. Haste Andersen P, Nielsen M, Lund OLE. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006;15:2558–2567.
    • 154. Paul S, Sidney J, Sette A et al. TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol. 2016;114:18–19.
    • 155. Magnan CN, Zeller M, Kayala MA et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 2010;26:2936–2943.
    • 156. He Y, Xiang Z, Mobley HLT. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Biomed. Res. Int. 2010;2010:297505.
    • 157. Walker JM. The Proteomics Protocols Handbook. New Jersey(NJ): Springer; 2005.
    • 158. Sharma N, Patiyal S, Dhall A et al. AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief Bioinform. 2021;22:bbaa294.
    • 159. Gupta S, Kapoor P, Chaudhary K et al. In silico approach for predicting toxicity of peptides and proteins. PLOS ONE 2013;8:e73957.
    • 160. Waterhouse A, Bertoni M, Bienert S et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303.
    • 161. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein– protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 2003;125:1731–1737.
    • 162. Abraham MJ, Murtola T, Schulz R et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1:19–25.
    • 163. Yang N, Jin X, Zhu C et al. Subunit vaccines for Acinetobacter baumannii. Front. Immunol. 2023;13:1088130.
    • 164. Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle it. Vaccines (Basel) 2021;9:570.
    • 165. Piri-Gharaghie T, Doosti A, Mirzaei SA. Novel adjuvant nano-vaccine induced immune response against Acinetobacter baumannii. AMB Express. 2023;13:1–16.
    • 166. Hosseinnezhad-Lazarjani E, Doosti A, Sharifzadeh A. Novel csuC-DNA nanovaccine based on chitosan candidate vaccine against infection with Acinetobacter baumannii. Vaccine 2023;41:2170–2183.
    • 167. Dey J, Mahapatra SR, Singh PK et al. Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction–based approaches. Immunol. Res. 2023;71(4):639–662.
    • 168. Wang SH, Sheng W-H, Chang Y-Y et al. Healthcare-associated outbreak due to pan-drug resistant Acinetobacter baumannii in a surgical intensive care unit. J. Hosp. Infect. 2003;53:97–102.
    • 169. Otter JA, Yezli S, French GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect. Control Hosp. Epidemiol. 2011;32:687–699.
    • 170. Texidó R, Cabanach P, Kaplan R et al. Bacteriophobic zwitterionic/dopamine coatings for medical elastomers. Adv. Mater. Interfaces 2022;9:2201152.
    • 171. Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 2003;36:1111–1118.
    • 172. Di Venanzio G, Flores-Mireles AL, Calix JJ et al. Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nat. Commun. 2019;10:2763.
    • 173. Choe H, Tatro JM, Hausman BS et al. Staphylococcus aureus and Acinetobacter baumannii inhibit osseointegration of orthopedic implants. Infect. Immun. 2022;90:e00669–21.
    • 174. Duszynska W, Rosenthal VD, Szczesny A et al. Device associated–health care associated infections monitoring, prevention and cost assessment at intensive care unit of University Hospital in Poland (2015–2017). BMC Infect. Dis. 2020;20:761.
    • 175. Sharifipour E, Shams S, Esmkhani M et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020;20:1–7.
    • 176. Tacconelli E, Cataldo MA, Dancer SJ et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014;20:1–55.
    • 177. Iyer R, Moussa SH, Durand-Reville TF et al. Acinetobacter baumannii OmpA is a selective antibiotic permeant porin. ACS Infect. Dis. 2017;4:373–381.
    • 178. Zeighami H, Valadkhani F, Shapouri R et al. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect. Dis. 2019;19:1–9. • Reported the biofilm formation among clinical isolates of A. baumannii and the genes related to biofilm formation, they found that csuE was the most prevalent gene present in biofilm-forming A. baumannii.
    • 179. Badmasti F, Siadat SD, Bouzari S et al. Molecular detection of genes related to biofilm formation in multidrug-resistant Acinetobacter baumannii isolated from clinical settings. J. Med. Microbiol. 2015;64:559–564.
    • 180. Russo TA, Luke NR, Beanan JM et al. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307–0294 is a major virulence factor. Infect. Immun. 2010;78:3993–4000.
    • 181. Chen X, Meng X, Gao Q et al. Meropenem selection induced overproduction of the intrinsic carbapenemase as well as phenotype divergence in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2017;50:419–426.
    • 182. Wang-Lin SX, Olson R, Beanan JM et al. The capsular polysaccharide of Acinetobacter baumannii is an obstacle for therapeutic passive immunization strategies. Infect. Immun. 2017;85:10–1128.
    • 183. Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 2008;68:4–16.
    • 184. Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010;42:39–51.
    • 185. Huang G, Shen X, Gong Y et al. Antibacterial properties of Acinetobacter baumannii phage Abp1 endolysin (PlyAB1). BMC Infect. Dis. 2014;14:1–8.
    • 186. Wu M, Hu K, Xie Y et al. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front. Microbiol. 2019;9:3302.
    • 187. Lood R, Winer BY, Pelzek AJ et al. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob. Agents Chemother. 2015;59:1983–1991.
    • 188. Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 2010;70:217–248.
    • 189. Fauconnier A. Phage therapy regulation: from night to dawn. Viruses 2019;11:352.
    • 190. Almotairy ARZ, Amer AM, El-Kady H et al. Nanostructured γ-Al2O3 synthesis using an arc discharge method and its application as an antibacterial agent against XDR bacteria. Inorganics (Basel) 2023;11:42.
    • 191. Niakan S, Niakan M, Hesaraki S et al. Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur J. Microbiol. 2013;6(5):e8341.
    • 192. Gui S, Li X, Feng M et al. A fresh pH-responsive imipenem-loaded nanocarrier against Acinetobacter baumannii with a synergetic effect. Front. Bioeng. Biotechnol. 2023;11:1166790.
    • 193. Natsheh IY, Elkhader MT, Al-Bakheit AA et al. Inhibition of Acinetobacter baumannii biofilm formation using different treatments of silica nanoparticles. Antibiotics 2023;12:1365.
    • 194. Mukherjee A, Bose S, Shaoo A et al. Nanotechnology based therapeutic approaches: an advanced strategy to target the biofilm of ESKAPE pathogens. Mater Adv. 2023;4:2544–2572.
    • 195. Daisy ERAC, Rajan M, Suganya K et al. Fungal Keratitis infected eye treatment with antibiotic-loaded zinc ions tagged polyvinyl acetate phthalate-g-polypyrrole drug carrier. J. Saudi Chem. Soc. 2021;25:101347.
    • 196. Murugesan G, Latha N, Suganya K et al. Stimulus-responsive zinc oxide-functionalized macromolecular humic acid nanocarrier for enhancement of antibacterial activity of ciprofloxacin hydrochloride. Int. J. Biol. Macromol. 2018;114:1109–1116.
    • 197. Wei R, Yang X, Liu H et al. Synthetic pseudaminic-acid-based antibacterial vaccine confers effective protection against Acinetobacter baumannii infection. ACS Cent Sci. 2021;7:1535–1542.
    • 198. Uppuluri P, Lin L, Alqarihi A et al. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog. 2018;14:e1007056.
    • 199. Ahmad TA, Tawfik DM, Sheweita SA et al. Development of immunization trials against Acinetobacter baumannii. Trials Vaccinol. 2016;5:53–60.
    • 200. Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Proc. Royal Soc. B: Biolog. Sci. 2017;284:20162562.
    • 201. Ud-Din M, Albutti A, Ullah A et al. Vaccinomics to design a multi-epitopes vaccine for Acinetobacter baumannii. Int. J. Environ. Res. Public Health 2022;19:5568.
    • 202. Bertin ML, Vinski J, Schmitt S et al. Outbreak of methicillin-resistant Staphylococcus aureus colonization and infection in a neonatal intensive care unit epidemiologically linked to a healthcare worker with chronic otitis. Infect. Control Hosp. Epidemiol. 2006;27:581–585.
    • 203. Bryant KA, Humbaugh K, Brothers K et al. Measures to control an outbreak of pertussis in a neonatal intermediate care nursery after exposure to a healthcare worker. Infect. Control Hosp. Epidemiol. 2006;27:541–545.
    • 204. Shen N, Cheng E, Whitley JW et al. Photograftable zwitterionic coatings prevent Staphylococcus aureus and Staphylococcus epidermidis adhesion to PDMS surfaces. ACS Appl. Bio. Mater. 2021;4:1283–1293.
    • 205. Ghavamian S, Hay ID, Habibi R et al. Three-dimensional micropatterning deters early bacterial adherence and can eliminate colonization. ACS Appl. Mater. Interf. 2021;13:23339–23351.
    • 206. Ozkan E, Mondal A, Douglass M et al. Bioinspired ultra-low fouling coatings on medical devices to prevent device-associated infections and thrombosis. J. Colloid. Interf. Sci. 2022;608:1015–1024.
    • 207. Francone A, Merino S, Retolaza A et al. Impact of surface topography on the bacterial attachment to micro-and nano-patterned polymer films. Surf. Interf. 2021;27:101494.