We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Rise and fall of Caspofungin: the current status of Caspofungin as a treatment for Cryptococcus neoformans infection

    Tawanny KB Aguiar

    Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil

    ,
    Ana CM Costa

    Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil

    ,
    Nilton AS Neto

    University of Brasília, Post-Graduation in Molecular Pathology, Darcy Ribeiro Campus, Brasília, DF, 70910-900, Brazil

    ,
    Daiane MS Brito

    Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil

    Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Cleverson DT Freitas

    Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil

    ,
    João MM Neto

    Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil

    ,
    Felipe P Mesquita

    Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    &
    Pedro FN Souza

    *Author for correspondence: Tel.: +55 853 366 9816;

    E-mail Address: pedrofilhobio@gmail.com

    Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0236

    Antifungal infections are becoming a major concern to human health due to antimicrobial resistance. Echinocandins have been promising agents against resistant fungal infections, primarily caspofungin, which has a more effective mechanism of action than azoles and polyenes. However, fungi such as Cryptococcus neoformans appear to be inheritably resistant to these drugs, which is concerning due to the high clinical importance of C. neoformans. In this review, we review the history of C. neoformans and the treatments used to treat antifungals over the years, focusing on caspofungin, while highlighting the C. neoformans problem and possible explanations for its inherent resistance.

    Plain language summary

    Caspofungin is a drug used to treat several types of fungal infections. Resistance to caspofungin is a huge problem, especially in those that are immunocompromised. It is important to understand the history of caspofungin discovery, its clinical applications and its mechanism of action, as well as if a new drug target could be used overcome resistance. This review may perform guide new studies combining caspofungin with other drugs and indicate new potential targets for caspofungin.

    References

    • 1. Drakulovski P, Krasteva D, Bellet V et al. Exposure of Cryptococcus neoformans to seven commonly used agricultural azole fungicides induces resistance to fluconazole as well as cross-resistance to voriconazole, posaconazole, itraconazole and isavuconazole. Pathogens 12(5), 662 (2023).
    • 2. Sionov E, Chang YC, Garraffo HM, Dolan MA, Ghannoum MA, Kwon-Chung KJ. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob. Agents Chemother. 56(3), 1162–1169 (2012).
    • 3. Soltani M, Tobin CM, Bowker KE, Sunderland J, MacGowan AP, Lovering AM. Evidence of excessive concentrations of 5-flucytosine in children aged below 12 years: a 12-year review of serum concentrations from a UK clinical assay reference laboratory. Int. J. Antimicrob. Agents 28(6), 574–577 (2006).
    • 4. Perrine-Walker F. Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies. Brazilian J. Microbiol. 53(3), 1101–1113 (2022).
    • 5. Walker LA, Gow NAR, Munro CA. Fungal echinocandin resistance. Fungal Genet. Biol. 47(2), 117–126 (2010).
    • 6. Letscher-Bru V. Caspofungin: the first representative of a new antifungal class. J. Antimicrob. Chemother. 51(3), 513–521 (2003).
    • 7. Feldmesser M, Kress Y, Mednick A, Casadevall A. The effect of the echinocandin analogue Caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J. Infect. Dis. 182(6), 1791–1795 (2000).
    • 8. Yassin Z, Lotfali E, Khourgami MR et al. Caspofungin resistance in clinical Aspergillus flavus isolates. J. Med. Mycol. 31(4), 101166 (2021).
    • 9. Thompson JR, Douglas CM, Li W et al. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol. 181(2), 444–453 (1999).
    • 10. Maligie MA, Selitrennikoff CP. Cryptococcus neoformans resistance to echinocandins: (1,3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob. Agents Chemother. 49(7), 2851–2856 (2005).
    • 11. Huang W, Liao G, Baker GM et al. Lipid flippase subunit Cdc50 mediates drug resistance and virulence in Cryptococcus neoformans. MBio 7(3), 1–8 (2016).
    • 12. Pianalto KM, Billmyre RB, Telzrow CL, Alspaugh JA. Roles for stress response and cell wall biosynthesis pathways in caspofungin tolerance in Cryptococcus neoformans. Genetics 213(1), 213–227 (2019).
    • 13. Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of action. Trends Microbiol. 11(6), 272–279 (2003).
    • 14. Kelly SL, Lamb DC, Taylor M, Corran AJ, Baldwin BC, Powderly WG. Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol. Lett. 122(1–2), 39–42 (1994).
    • 15. Joseph-Horne T, Loeffler RST, Hollomon DW, Kelly SL. Amphotericin B resistant isolates of Cryptococcus neoformans without alteration in sterol biosynthesis. Med. Mycol. 34(3), 223–225 (1996).
    • 16. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol. Microbiol. 114(5), 721–734 (2020).
    • 17. Stewart AG, Paterson DL. How urgent is the need for new antifungals? Expert. Opin. Pharmacother. 22(14), 1857–1870 (2021).
    • 18. Hsieh Y-H, Chuang W-C, Yu K-H, Jheng C-P, Lee C-I. Sequential photodynamic therapy with phthalocyanine encapsulated chitosan-tripolyphosphate nanoparticles and flucytosine treatment against Candida tropicalis. Pharmaceutics 11(1), 16 (2019).
    • 19. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J. Antimicrob. Chemother. 68(11), 2435–2444 (2013).
    • 20. Harris BE, Manning BW, Federle TW, Diasio RB. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob. Agents Chemother. 29(1), 44–48 (1986).
    • 21. Vermes A. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46(2), 171–179 (2000).
    • 22. Hashemian SM, Farhadi T, Velayati AA. Caspofungin: a review of its characteristics, activity, and use in intensive care units. Expert Rev. Anti. Infect. Ther. 18(12), 1213–1220 (2020).
    • 23. Lara-Aguilar V, Rueda C, García-Barbazán I et al. Adaptation of the emerging pathogenic yeast Candida auris to high caspofungin concentrations correlates with cell wall changes. Virulence 12(1), 1400–1417 (2021).
    • 24. Bafghi MH, Zarrinfar H, Darroudi M, Zargar M, Nazari R. Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Lett. Appl. Microbiol. 74(5), 809–819 (2022).
    • 25. Kartsonis NA, Nielsen J, Douglas CM. Caspofungin: the first in a new class of antifungal agents. Drug Resist. Updat. 6(4), 197–218 (2003).
    • 26. Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins – structure, mechanism of action and use in antifungal therapy. J. Enzyme Inhib. Med. Chem. 37(1), 876–894 (2022).
    • 27. Mora-Duarte J, Betts R, Rotstein C et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N. Engl. J. Med. 347(25), 2020–2029 (2002).
    • 28. Hope WW, Castagnola E, Groll AH et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 18, 38–52 (2012).
    • 29. Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 25(7), 792–798 (2019).
    • 30. Rybak JM, Cuomo CA, Rogers PD. The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Curr. Opin. Microbiol. 70, 102208 (2022).
    • 31. Aldrees A, Ghonem L, Almajid F, Barry M, Mayet A, Almohaya AM. Evaluating the inappropriate prescribing and utilization of caspofungin, a four-year analysis at a teaching hospital in Saudi Arabia. Antibiotics 10(12), 1498 (2021).
    • 32. Thompson GR, Soriano A, Cornely OA et al. Rezafungin versus caspofungin for treatment of candidaemia and invasive candidiasis (ReSTORE): a multicentre, double-blind, double-dummy, randomised phase III trial. Lancet 401(10370), 49–59 (2023).
    • 33. McCormack PL, Perry CM. Caspofungin. Drugs 65(14), 2049–2068 (2005).
    • 34. Zeng G, Xu X, Gao J, da Silva Dantas A, Gow NAR, Wang Y. Inactivating the mannose-ethanolamine phosphotransferase Gpi7 confers caspofungin resistance in the human fungal pathogen Candida albicans. Cell Surf. 7, 100057 (2021).
    • 35. Serena C. In vitro interaction of micafungin with conventional and new antifungals against clinical isolates of Trichosporon, Sporobolomyces and Rhodotorula. J. Antimicrob. Chemother. 55(6), 1020–1023 (2005).
    • 36. Serena C, Fernández-Torres B, Pastor FJ et al. In vitro interactions of micafungin with other antifungal drugs against clinical isolates of four species of Cryptococcus. Antimicrob. Agents Chemother. 49(7), 2994–2996 (2005).
    • 37. Vitale RG, de Hoog GS, Schwarz P et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J. Clin. Microbiol. 50(1), 66–75 (2012).
    • 38. Xu D, Zhang X, Zhang B et al. The lipid flippase subunit Cdc50 is required for antifungal drug resistance, endocytosis, hyphal development and virulence in Candida albicans. FEMS Yeast Res. 19(3), 1254–1280 (2019).
    • 39. Cao C, Xue C. More than flipping the lid: cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans. Microb. Cell 7(4), 115–118 (2020).
    • 40. Cao C, Wang Y, Husain S, Soteropoulos P, Xue C. A mechanosensitive channel governs lipid flippase-mediated echinocandin resistance in Cryptococcus neoformans. MBio 10(6), 1–8 (2019).
    • 41. Tancer RJ, Wang Y, Pawar S, Xue C, Wiedman GR. Development of antifungal peptides against Cryptococcus neoformans; leveraging knowledge about the cdc50Δ mutant susceptibility for lead compound development. Microbiol. Spectr. 10(2), 1–13 (2022).
    • 42. Kalem MC, Subbiah H, Leipheimer J, Glazier VE, Panepinto JC. Puf4 mediates post-transcriptional regulation of cell wall biosynthesis and caspofungin resistance in Cryptococcus neoformans. MBio 12(1), 1–12 (2021).
    • 43. Moreira-Walsh B, Ragsdale A, Lam W et al. Membrane integrity contributes to resistance of Cryptococcus neoformans to the cell wall inhibitor Caspofungin. mSphere 7(4), e0013422 (2022).
    • 44. Camacho E, Chrissian C, Cordero RJB, Liporagi-Lopes L, Stark RE, Casadevall A. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture. Microbiology 163(11), 1540–1556 (2017).
    • 45. Holmes AR, Lin Y-H, Niimi K et al. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob. Agents Chemother. 52(11) (2008).
    • 46. Niimi K, Maki K, Ikeda F et al. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob. Agents Chemother. 50(4), 1148–1155 (2006).
    • 47. Cancidas | C52H88N10O15 | CID 2826718 – PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/2826718
    • 48. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46(W1), W257–W263 (2018).
    • 49. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 42(W1), W53–W58 (2014).
    • 50. Banerjee P, Dehnbostel FO, Preissner R. Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front. Chem. 6(8), 387941 (2018).
    • 51. Kurland S, Furebring M, Löwdin E, Eliasson E, Nielsen EI, Sjölin J. Pharmacokinetics of caspofungin in critically ill patients in relation to liver dysfunction: differential impact of plasma albumin and bilirubin levels. Antimicrob. Agents Chemother. 63(6) (2019).
    • 52. Ran X, Wang P, Zhang A, Tang B. Efficacy and safety of caspofungin for patients with hepatic insufficiency. BMC Infect. Dis. 22(1) (2022).
    • 53. Lepak AJ, Andes DR. Echinocandins. Encycl. Mycol. 1-2(1), V1-438–V1-448 (2017).
    • 54. Fotsing LND, Bajaj T. Caspofungin. Tagliche Prax. 45(4), 868–872 (2022).
    • 55. Siala W, Kucharíková S, Braem A et al. The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nat. Commun. 717(1), 1–15 (2016).
    • 56. dos Reis TF, de Castro PA, Bastos RW et al. A host defense peptide mimetic, brilacidin, potentiates caspofungin antifungal activity against human pathogenic fungi. Nat. Commun. 14114(1), 1–19 (2023).