We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Transposon library screening to identify genes with a potential role in Streptococcus suis biofilm formation

    Haikun Wang

    College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China

    Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China

    ,
    Qingying Fan

    College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China

    Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China

    ,
    Shuji Gao

    College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China

    Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China

    ,
    Li Yi

    Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China

    College of Life Science, Luoyang Normal University, Luoyang, 471934, China

    ,
    Yuxin Wang

    *Author for correspondence:

    E-mail Address: wangyuxin_1991@163.com

    College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China

    Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China

    &
    Yang Wang

    **Author for correspondence:

    E-mail Address: wangyocean@163.com

    College of Animal Science & Technology, Henan University of Science & Technology, Luoyang, 471000, China

    Key Laboratory of Molecular Pathogen & Immunology of Animal of Luoyang, Luoyang, 471000, China

    Published Online:https://doi.org/10.2217/fmb-2023-0181

    Background: Biofilm formation is considered to be one of reasons for difficulty in the prevention and control of Streptococcus suis. Aims: To explore the potential genes involved in the biofilm formation of S. suis. Methods: Transposon mutagenesis technology was used to screen biofilm-defective strains of S. suis, and the potential genes related to biofilm were identified. Results: A total of 19 genes were identified that were involved in bacterial metabolism, peptidoglycan-binding protein, cell wall synthesis, ABC transporters, and so on. Conclusion: This study constructed 979 transposon mutation libraries of S. suis. A total of 19 gene loci related to the formation of S. suis biofilm were identified, providing a reference for exploring the mechanism of S. suis biofilm formation in the future.

    Plain language summary

    Streptococcus suis is an important pathogen (this is a microorganism that causes, or can cause, disease) that can be transmitted between animals and humans. The ability to form a protective community, called a biofilm, is one of the reasons why we can have difficulty in preventing and treating S. suis infection. The main purpose of this study was to screen potential genes that may determine biofilm formation in S. suis. The results revealed 19 genes that may affect the biofilm formation of S. suis.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Dechene-Tempier M, Jouy E, Bayon-Auboyer MH et al. Antimicrobial resistance profiles of Streptococcus suis isolated from pigs, wild boars, and humans in France between 1994 and 2020. J. Clin. Microbiol. 61(9), e0016423 (2023).
    • 2. Liu Y, Kou Z, Wang X, Chen S, Li R, Wang Q. Case report: one human Streptococcus suis infection in Shandong Province, China. Medicine (Baltimore) 102(14), e33491 (2023).
    • 3. Rayanakorn A, Katip W, Goh BH, Oberdorfer P, Lee LH. A risk scoring system for predicting Streptococcus suis hearing loss: A 13-year retrospective cohort study. PLOS ONE 15(2), e0228488 (2020).
    • 4. Wang Y, Wang Y, Sun L, Grenier D, Yi L. Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl. Microbiol. Biotechnol. 102(21), 9121–9129 (2018). •• Describes the mechanism of biofilm formation of Streptococcus suis and effective methods for removing and killing bacteria embedded in biofilms.
    • 5. Zhang S, Gao X, Xiao G et al. Intracranial subarachnoidal route of infection for investigating roles of Streptococcus suis biofilms in meningitis in a mouse infection model. J. Vis. Exp. doi: 10.3791/57658(137) (2018) (Epub ahead of print).
    • 6. Willett JLE, Dale JL, Kwiatkowski LM et al. Comparative biofilm assays using Enterococcus faecalis OG1RF identify new determinants of biofilm formation. mBio 12(3), e0101121 (2021).
    • 7. Gupta P, Mankere B, Chekkoora Keloth S, Tuteja U, Chelvam KT. Generation and in vivo characterization of Tn5-induced biofilm mutants of Vibrio cholerae O139. Curr. Microbiol. 75(10), 1324–1333 (2018).
    • 8. Defrancesco AS, Masloboeva N, Syed AK et al. Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc. Natl Acad. Sci. USA 114(29), E5969–E5978 (2017). • Discusses genes involved in eDNA release during the biofilm formation process of Staphylococcus aureus.
    • 9. Kaleta MF, Petrova OE, Zampaloni C, Garcia-Alcalde F, Parker M, Sauer K. A previously uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the γ-proteobacteria. NPJ Biofilm. Microbiome. 8(1), 54 (2022).
    • 10. Liu R, Zhang P, Su Y et al. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation. Sci. Rep. 6, 27133 (2016). •• Describes the screening of antiphagocytic genes by transposon mutagenesis in S. suis and Streptococcus equi.
    • 11. Li J, Fan Q, Jin M et al. Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis. Virulence 12(1), 3062–3073 (2021).
    • 12. Wang Y, Yi L, Wu Z et al. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLOS ONE 7(4), e33371 (2012). • Identifies the proteomics of immunogenic proteins associated with biofilm infection.
    • 13. Stulke J, Kruger L. Cyclic di-AMP signaling in bacteria. Annu. Rev. Microbiol. 74, 159–179 (2020).
    • 14. Zhang Q, Ma Q, Wang Y, Wu H, Zou J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int. J. Oral Sci. 13(1), 30 (2021).
    • 15. Tao F, Swarup S, Zhang LH. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol. 12(12), 3159–3170 (2010).
    • 16. Cabral MP, Soares NC, Aranda J et al. Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J. Proteome Res. 10(8), 3399–3417 (2011).
    • 17. Martinez-Gil M, Goh KGK, Rackaityte E et al. YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation. Sci. Rep. 7(1), 11326 (2017).
    • 18. Horng YT, Wang CJ, Chung WT, Chao HJ, Chen YY, Soo PC. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J. Microbiol. Immunol. Infect 51(2), 174–183 (2018).
    • 19. Wu X, Hou J, Chen X, Chen X, Zhao W. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans. BMC Microbiol. 16, 51 (2016).
    • 20. Beenken KE, Dunman PM, Mcaleese F et al. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186(14), 4665–4684 (2004).
    • 21. Ferreira MT, Manso AS, Gaspar P, Pinho MG, Neves AR. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLOS ONE 8(3), e58277 (2013).
    • 22. Zhu X, Long F, Chen Y, Knochel S, She Q, Shi X. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes. Appl. Environ. Microbiol. 74(24), 7675–7683 (2008).
    • 23. Vanderlinde EM, Harrison JJ, Muszynski A, Carlson RW, Turner RJ, Yost CK. Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol. Ecol. 71(3), 327–340 (2010).
    • 24. Zhu X, Liu W, Lametsch R et al. Phenotypic, proteomic, and genomic characterization of a putative ABC-transporter permease involved in Listeria monocytogenes biofilm formation. Foodborne Pathog. Dis. 8(4), 495–501 (2011).